Cho tam giác ABC cân tại A, gọi 2 điểm M và N lần lượt là trung điểm của AB và AC. Hai đoạn BN và CM cắt nhau tại G
a, C/m AM=AN
b, Trên tia đối tia NB, lấy điểm K sao cho NK=NG. C/m
tam giác ANG= tam giác CNK. Từ đó suy ra AG//CK
c, C/m BG=GK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nhé
a)do tam giác ABC cân ở A=>AB=AC
m,n lần lượt là trung điểm AB,AC=>AM=AN
b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK
=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK
c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN
mà GN=NK=>BG=GN+NK=GK
d)tam giác ANG=CNK=>AG=CK
=>BC+AG=BC+CK>BK(bđt tam giác)
lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN
=>BC+AG>BK>BN>MN
hình tự vẽ nhé
a)do tam giác ABC cân ở A=>AB=AC
m,n lần lượt là trung điểm AB,AC=>AM=AN
b)xét tam giác ANG và tam giác CNK có AN=NC, góc ANG=góc CNK ( đối đỉnh),GN=NK
=>tam giác ANG=tam giác CNK (c-g-c)=> góc GAN=góc KCN (g t ư)=>AG//CK
c) Do BN, CM là các đường trung tuyến cắt nhau tại G=> G là trọng tâm tam giác ABC=>BG=2GN
mà GN=NK=>BG=GN+NK=GK
d)tam giác ANG=CNK=>AG=CK
=>BC+AG=BC+CK>BK(bđt tam giác)
lại có góc AMN là góc nhọn=>góc BMN tù=>BN>MN
=>BC+AG>BK>BN>MN
ta co :am=\(\frac{1}{2}\)ac(vi m la trung diem cua ac)
an=\(\frac{1}{2}\)ab(vi n la trung diem cua ab)
ma ab=ac suy ra am=an
b)xet tam giac ang va tam giac cnk co
an=bn
goc knb= goc ang
kn=ng
suy ra tam giac ang=tam giac cnk c,g,c
c)suy ra goc bkn=goc agn
ma s goc nay o vi tri so le trong
suy ra ag songsong kb
d)vi m la trung diem cua ac suy ra bm la trung diem cua ac suy ra bg=\(\frac{2}{3}\)gm
vi n la trung diem cua ab suy ra cn la trung diem cua ab
suy ra cg=\(\frac{2}{3}\)cn
ma gn=nk suy ra cg =gk
suy ra gb=kg
y cuoi dang suy nghi nha ban
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔANB và ΔAMC có
AN=AM(cmt)
\(\widehat{BAN}\) chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
hay \(\widehat{MBG}=\widehat{NCG}\)(3)
Xét ΔMBG có \(\widehat{MBG}+\widehat{MGB}+\widehat{BMG}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔNCG có \(\widehat{NCG}+\widehat{NGC}+\widehat{GNC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1), (2) và (3) suy ra \(\widehat{MGB}+\widehat{BMG}=\widehat{NGC}+\widehat{CNG}\)
mà \(\widehat{MGB}=\widehat{NGC}\)(hai góc đối đỉnh)
nên \(\widehat{BMG}=\widehat{CNG}\)
Xét ΔBMG và ΔCNG có
\(\widehat{BMG}=\widehat{CNG}\)(cmt)
BM=CN(cmt)
\(\widehat{MBG}=\widehat{NCG}\)(cmt)
Do đó: ΔBMG=ΔCNG(g-c-g)
Suy ra: GM=GN(Hai cạnh tương ứng)
a, Ta có: \(AB=AC\left(gt\right);AM=\dfrac{1}{2}AB;AN=\dfrac{1}{2}AC\)
\(\Rightarrow AM=AN\) (đpcm)
b,Xét tam giác ANG và tam giác CNK có:
AN=CN(gt); \(\widehat{ANG}=\widehat{CNK}\)(đối đỉnh);GN=KN(gt)
Do đó tam giác ANG= tam giác CNK(c.g.c)
=>\(\widehat{NAG}=\widehat{NCK}\)(cặp cạnh tương ứng)
=> AG//CK (do có 1 cặp góc bằng nhau ở vị trí so le trong) (đpcm)
c, Do BN là trung tuyến của cạnh AC của tam giác ABC nên \(NG=\dfrac{1}{3}BN\); \(BG=\dfrac{2}{3}BN\)(1)
mà NG=NK(gt)=> \(NG+NK=GK=\dfrac{1}{3}BN+\dfrac{1}{3}BN=\dfrac{2}{3}BN\)(2)
Từ (1) và (2) suy ra: BG=GK (đpcm)
Chúc bạn học tốt!!!