K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Bài giải:

Ta có MD // AE (vì MD // AB)

ME // AD (vì ME // AC)

Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I.


11 tháng 1 2018

Ta có: MD// AE (vì MD// AB)

ME // AD (vì ME // AC)

Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I.

Ta có: EM//AC => EM//AD

MD//AB => MD//AE

=> AEMD là hình bình hành

I là trung điểm của ED => I là trung điểm của AM => I thuộc AM

=> AIM=180

13 tháng 11 2021

a: Xét tứ giác AEMD có 

AE//MD

AD//ME

Do đó: AEMD là hình bình hành

13 tháng 11 2021

Cô giải câu b giúp e được k ạ

 

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác AMBP có

D là trung điểm chung của AB và MP

MA=MB

Do đó: AMBP là hình thoi

=>ABlà phân giác của góc MAP(1)

c: Xét tứ giác AMCQ có

E là trung điểm chung của AC và MQ

MA=MC

Do đó: AMCQ là hình thoi

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*90=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

26 tháng 12 2020

a) Xét ΔAMF có 

AE là đường cao ứng với cạnh MF(\(AE\perp MF\))

AE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔAMF cân tại A(Định lí tam giác cân)

hay AM=AF(1)

Xét ΔCFM có 

CE là đường cao ứng với cạnh MF(\(CE\perp MF\))

CE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔCFM cân tại C(Định lí tam giác cân)

hay CM=CF(2)

Vì ΔABC vuông tại A(gt) có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CM=BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=CM=BM(3)

Từ (1), (2) và (3) suy ra AM=AF=CF=CM=BM

Xét tứ giác AMCF có AM=CM=CF=FA(cmt)

nên AMCF là hình thoi(Dấu hiệu nhận biết hình thoi)

b)

Sửa đề: Tìm điều kiện của ΔABC để tứ giác AMCF là hình vuông

Hình thoi AMCF trở thành hình vuông khi  \(\widehat{AMC}=90^0\)

hay \(AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(\(AM\perp BC\))

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

hay AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì AMCF trở thành hình vuông

c)

Ta có: MD\(\perp\)AB(gt)

AC\(\perp\)AB(ΔABC vuông tại A)

Do đó: MD//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(cmt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

D là trung điểm của AB(cmt)

Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên \(MD=\dfrac{AC}{2}\)(Định lí 2 đường trung bình của tam giác)(1)

Ta có: \(ME\perp AC\)(gt)

\(AB\perp AC\)(ΔABC vuông tại A)

Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

nên \(CE=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MD=CE

Xét tứ giác CMDE có 

MD//CE(MD//AC)

MD=CE(cmt)

Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo CD và EM cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của EM(gt)

nên I là trung điểm của CD(đpcm)

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.