Chứng minh rằng từ đẳng thức ad=bc (c, d khác 0 ) ta có thể suy ra được tỉ lệ thức a : c = b : d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Trương Quỳnh Hoa và câu hỏi tương tự có đấy, tick cho mình nha!
\(ad=bc\Rightarrow ad:dc=bc:dc\Rightarrow\frac{ad}{dc}=\frac{bc}{dc}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Ta có: ad = bc; c ≠ 0; d ≠ 0 suy ra cd ≠ 0
Chia cả 2 vế cho cd. Suy ra:
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
Do ad = bc
=> \(\frac{ad}{cd}=\frac{bc}{cd}\)
=> \(\frac{a}{c}=\frac{b}{d}\left(đpcm\right)\)
Do ad = bc
\(\Rightarrow\frac{a}{d}=\frac{b}{c}\)
\(\Rightarrow ac=bd\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\left(\text{đ}pcm\right)\)
Ta có :
\(ad=bc\left(1\right)\)
Chia cả 2 vế của \(\left(1\right)\) cho \(bd\) ta được :
\(VT=\dfrac{ad}{bd}=\dfrac{a}{b}\left(2\right)\)
\(VP=\dfrac{bc}{bd}=\dfrac{c}{d}\left(3\right)\)
Từ \(\left(2\right)+\left(3\right)\Leftrightarrowđpcm\)
Từ có đẳng thức: \(ad=bc\)
\(\Rightarrow\dfrac{ad}{cd}=\dfrac{bc}{cd}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\) (đpcm)
Ta có: ad=bc (1)
Chia 2 vế của (1) cho bd ta có:
\(VT=\frac{ad}{bd}=\frac{a}{b}\left(2\right)\)
\(VP=\frac{bc}{bd}=\frac{c}{d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)
\(ad=bc\Rightarrow\frac{ad}{cd}=\frac{bc}{cd}\Rightarrow\frac{a}{c}=\frac{b}{d}\)