Cho tam giác MNP cân tại M có MN=MP=12cm NP=14cm kẻ đường trung tuyến MI
a) Chứng minh: tam giác MIN=tam giác MIP
b) Chứng minh: MI vuông góc với NP
c) Tính MI
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK
a) Xét tam giác MNP vuông tại M có I là trung điểm NP (gt)
=> MI cũng là phân giác trong của \(\widehat{NMP}\)
=> \(\widehat{NMI}=\widehat{IMP}\)
Xét tam giác MIP và tam giác MIN có:
IM chung
\(\widehat{NMI}=\widehat{IMP}\left(cmt\right)\)
NI=PI ( I là trung điểm NP)
=> Tam giác MIP=tam giác MIN (cgc)
b) Có tam giác MIP= tam giác MIN (cmt)
=> MP=MN (2 cạnh tương ứng)
Xét tam giác MNP vuông tại M có MP=MN (cmt)
=> Tam giác MNP vuông cân tại M
Có MI là đường trung tuyển tam giác MNP
Mà trong tam giác vuông cân đường trung tuyến trùng với đường cao
=> MI _|_ NP (đpcm)
c) F là điểm gì vậy?
Xét t/g MIN và MIP ( có MI chung) i=i=90 độ MN=MP ( tam giác cân)
MIP=MIN ( c,g,c)
có T/G MIP=MIN ( CMT)
suy ra IP=IN
a) ΔMIN = ΔMIP:
Xét ΔMIN và ΔMIP có:
+ MN = MP (ΔMNP cân tại M)
+ MI là cạnh chung.
+ IN = IP (MI là trung tuyến NP)
=> ΔMIN = ΔMIP (c - c - c)
b) MI ⊥ NP:
Ta có: ΔMIN = ΔMIP (câu a)
=> \(\widehat{I_1}=\widehat{I_2}\) (2 góc tương ứng)
Mà \(\widehat{I_1}+\widehat{I_2}=180^o\) (kề bù)
=> \(\widehat{I_1}=\widehat{I_2}=90^o\)
hay MI ⊥ NP.
c) Tính MI:
Ta có: MI là trung tuyến NP.
=> IN = IP.
Mà NP = 14 cm.
=> IN (= IP) = 7 cm.
Ta có: MI ⊥ NP (câu b)
=> \(\widehat{I_1}=90^o\).
=> ΔMIN vuông tại I.
Áp dụng định lí PITAGO đối với ΔMIN:
Ta có: MN2 = NI2 + MI2
=> MI2 = MN2 - NI2
=> MI2 = 122 - 72
=> MI2 = 95
=> MI2 = \(\sqrt{95}\) (cm)
Tuấn Anh Phan Nguyễn câu b bạn nên dùng tính chất tam giác cân thì hay hơn