K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

mn cố gắng giúp em với

20 tháng 4 2017

tìm Max thì bn bình phương lên r bunyakovsky

Min thì Áp dụng \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\)

18 tháng 5 2016

\(\sqrt{\frac{2}{3}+2\sqrt{\frac{3}{2}}-\sqrt{6}}=\frac{\sqrt{6}}{3}\)

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

22 tháng 3 2020

a) \(P=\left(-\frac{2}{3}x^3y^2\right).\left(\frac{3}{5}x^2y^5\right)\)

\(P=\left(-\frac{2}{3}\cdot\frac{3}{5}\right).\left(x^3\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\)

\(P=-\frac{2}{5}x^5y^7\)

Hệ số là  \(-\frac{2}{5}\); Phần biến là \(x^5y^7\)

Bậc của đơn thức là 12

b) Thay \(x=\frac{5}{2}\)vào đơn thức M(x), ta được :

     \(2\cdot\left(\frac{5}{2}\right)^2-7\cdot\frac{5}{2}+5=0\)

\(\Leftrightarrow\frac{25}{2}-\frac{35}{2}+5=0\)

\(\Leftrightarrow-5+5=0\)

\(\Leftrightarrow0=0\)(TM)

Vậy \(x=\frac{5}{2}\)là nghiệm của đơn thức M(x) (ĐPCM)

Thay \(x=-1\)vào đơn thức M(x), ta được :

      \(2\cdot\left(-1\right)^2-7\cdot\left(-1\right)+5=0\)

\(\Leftrightarrow2+7+5=0\)

\(\Leftrightarrow14=0\)(KTM)

Vậy \(x=-1\)không phải là nghiệm của đơn thức M(x) (ĐPCM)