Viết một đa thức bậc 3 với hai biến x, y và có ba hạng tử ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có nhiều cách viết, chẳng hạn:
x3 + x2y – xy2
x3 + xy + 1
x + y3 + 1
.........
\({x^3} + 2x - 1\)
Chú ý : Có nhiều cách khác nhau để viết đa thức nhưng trong bài này các số hạng trong đa thức luôn luôn là 3
Bạn Chung đúng. Đó là đa thức \({x^2} + {y^2} + xy + x + y + 1.\)
câu 1:
1+x^3+y^2
câu 2
a, c=a+b=(\(x^2\)-2y+xy+1)+(\(x^2\)+y-x^2y^2-1)
=x^2-2y+xy+1+x^2+y-x^2y^2-1
= (x^2+x^2)+(-2y+y)+(1-1)+xy
= 2x^2-y+xy
b,c=b-a=(x^2-2y+xy+1)-(x^2 +y-x^2y^2-1)
= x^2-2y+xy+1-x^2-y+x^2y^2+1
=(x^2-x^2)+(-2y-y)+(1+1)+xy
=2x^2-3y+2+xy
cho mik nha
Gọi A là đa thức cần tìm
Đa thức bậc năm một biến có hai hạng tử mà hệ số cao nhất là 2 nên Đa thức chắc chắn sẽ có dạng là \(A=2x^5+B\)
Hệ số tự do là 64 mà đa thức A chỉ có hai hạng tử nên \(A=2x^5+64\)
Đặt A=0
=>\(2x^5+64=0\)
=>\(x^5+32=0\)
=>\(x^5=-32\)
=>x=-2
2x3+5y-\(\dfrac{1}{3}\)y2
2x3+5y-\(\dfrac{1}{3}\)y2