K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Tam giác ABC là tam giác vuông tại B.

Hỏi đáp Toán

28 tháng 7 2021

 

Tam giác ABC là tam giác vuông tại B

Giải bài 52 trang 77 Toán 7 Tập 1 | Giải bài tập Toán 7

 
11 tháng 12 2017

Tam giác ABC là tam giác vuông tại B

Giải bài 52 trang 77 Toán 7 Tập 1 | Giải bài tập Toán 7

 

14 tháng 2 2016

chắc là tg vuông vì góc BAC=900,vẽ hình sẽ thấy

14 tháng 2 2016

moi hok lop 6 thoi

4 tháng 12 2015

Các bạn làm cho mình vs, mình tick cho

2 tháng 1 2017

ủa bn là CTV hả??????

hahaTam giác ABC là tam giác vuông tại B. Hỏi đáp Toán

chuẩn rồi bạn là người đẹp trai và học giỏi nhất thế giới 

BẠN RẤT ĐẸP TROAI

hiha

18 tháng 5 2017

a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\)\(\overrightarrow{BC}\) cùng phương.
\(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).

13 tháng 10 2017

a) Tọa độ các điểm trong hình vẽ là:

A(2;-2); B(4;0); C(-2;0); D(2;3); E(2;0);F(-3;2); G(-2;-3)

b) Ta có hình vẽ ∆ABC:

A(-3;4); B(-3;1); C(1;-1).


NV
21 tháng 3 2021

Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý