tìm 2 chữ số tận cùng của\(2^{100}\):\(7^{1991}\)
Tìm 4 chữ số tận cùng của \(5^{1992}\)
Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2100=(220)5=(...76)5=(...76)
7^1991=7^1991.7^3=(74)^497.343=(...01)^497.343=(....01).343=....43
5^1992=(5^4)^498=625^498=0625^498=(...0625)
Chu so tan cung cua so 2^100 la 4, chu so tan cung cua 7^1991 la 7
Mk làm bằng mẹo đó nha!
2. ta có:
220 ≡76220≡ dư 76(chia cho 100)
=>(220)5≡765≡76(220)5≡765≡ dư76 ( chia cho 100)
=> 2100≡762100≡ dư76(chia cho 100)
=>2100 có hai chữ tận cùng là 76
5^1992=(5^4)^498=625^498=0625^498=(.....0625)
vậy bốn chữ số tận cùng của 5^1992 là 0625
ta có:5^8=390625
số có tận cùng là 0625 thì nâng lên bất cứ số nào cũng có tận cùng là 0625
ok
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
1, chu so tan cung cua 4^21=4^1+4^20=(...1) + (...6) =(...6) vay 4^21 co tan cung la 6
4^21=(44)5.4=165.4=(...6).4=.....4
=>c/số tận cùng của 4^21 là 4
953=(92)26.9=8126.9=(......1).9=(.....9)
=>9^53 có tận là 9
3^103=(3^4)^25.3^3=81^25.27=(......................1).27=(.......7)
=>3^103 có tận là 7
b)Ta có :
\(5^{14}\equiv5625\left(mod10000\right)\)
\(\Rightarrow\left(5^{14}\right)^2\equiv5625^2\equiv0625\left(mod10000\right)\)
\(\Rightarrow\left(5^{28}\right)^{71}\equiv0625\left(mod10000\right)\)
\(\Rightarrow5^{1998}\equiv0625\left(mod1000\right)\)
\(\Rightarrow5^4\equiv0625\left(mod1000\right)\)
\(\Rightarrow5^{1992}=5^4.5^{1988}=0625^2\equiv0625\left(mod10000\right)\)
\(\Rightarrow\) \(4\) chữ số cuối của \(5^{1992}\) là \(0625\)
~ Học tốt ~