Tìm hai số x và y biết rằng :
\(\dfrac{x}{2}=\dfrac{y}{5}\) và \(xy=10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=k$
$\Rightarrow x=2k; y=5k$. Khi đó:
$xy=2k.5k=10$
$10k^2=10$
$k^2=1$
$\Rightarrow k=\pm 1$
Nếu $k=1$ thì $x=2k=2; y=5k=5$
Nếu $k=-1$ thì $x=2k=-2; y=5k=-5$
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)\(\Rightarrow xy=10k^2\)
\(\Rightarrow k^2=1\Rightarrow k=\pm1\)
Nếu k=1 \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
Nếu k=-1 \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
Do đó: x=12; y=16
\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
a) \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :
\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)
\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)
\( \Rightarrow 30.2 = x.5\)
\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\) ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )
Vậy x = 12 y = 18
b) Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)
Mà theo đề bài x – y = -21
Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} = - 3\) \( = \dfrac{x}{5}\)
\( \Rightarrow \)x = (-3).5
\( \Rightarrow \)x = -15
Thay x bằng -15 ta có -15 – y = -21
\( \Rightarrow \)y = -15 + 21
\( \Rightarrow \)y = 6
Vậy x = -15 và y = 6
\(\dfrac{x}{5}=\dfrac{y}{2}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
\(\Rightarrow xy=10k^2=1000\Rightarrow k=\pm10\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=50\\y=20\end{matrix}\right.\\\left\{{}\begin{matrix}x=-50\\y=-20\end{matrix}\right.\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
Giải:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Ta có: \(xy=10\)
\(\Rightarrow10k^2=10\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=2,y=5\)
+) \(k=-1\Rightarrow x=-2;y=-5\)
Vậy...
Nhân cả hai vế của tỉ lệ thức \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) với x (x ≠ 0), ta được: Thay xy = 10, ta được: \(\dfrac{x^2}{2}\) = \(\dfrac{10}{5}\)= 2 ⇔x2 = 4. Do đó x = 2 hoặc x = -2
Khi x = 2 thì y = 5
Khi x = -2 thì y = -5
Đặt k = . Ta có x = 2k, y = 5k
Từ xy=10. suy ra 2k.5k = 10 => 10 = 10 => = 1 => k = ± 1
Với k = 1 ta được = 1 suy ra x = 2, y = 5
Với k = -1 ta được = -1 suy ra x = -2, y = -5
Gọi \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
Với \(\dfrac{x}{2}=k\Rightarrow x=2k\); \(\dfrac{y}{5}=k\Rightarrow y=5k\)
Theo đề bài,ta còn có:
\(xy=10\)
hay 2k.5k=10
10k2 =10
\(\Rightarrow k=\pm1\)
Với k=1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=1\Rightarrow x=2;y=5\)
Với k=-1 \(\Rightarrow\dfrac{x}{2}=\dfrac{y}{5}=-1\Rightarrow x=-2;y=-5\)