tìm x,y,z biết: (x-y2+z)2+(y-2)2+(z-3)2=0
nhanh nha...sáng thứ 3 mình thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có: \(\hept{\begin{cases}\left(x-y-z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\Rightarrow\left(x-y-z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y-z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=2\\z=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{3x}{6}=\dfrac{4z}{16}=\dfrac{3x+y+4z}{6+3+16}=\dfrac{18}{25}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{18.2}{25}=\dfrac{36}{25}\\y=\dfrac{18.3}{25}=\dfrac{54}{25}\\z=\dfrac{18.4}{25}=\dfrac{72}{25}\end{matrix}\right.\)
1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21
Aps dụng tính chất của dãy tỉ số bằng nhau:
x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4
=> x/6 = 7/4 => x= 21/2
y/3 = 7/4 -> y= 21/4
z/3 = 7/4 -> z= 21/4
1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)
\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)
\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)
\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)
Vậy x=-1/6 ; y=1/4 và z = 1/3
3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)
\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)
\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)
Vậy x=7/2 ; y=4 và z=21/2
4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)
\(\frac{x-1}{3}=2\Rightarrow x=7\)
\(\frac{y-2}{4}=2\Rightarrow y=10\)
\(\frac{z-3}{5}=2\Rightarrow z=13\)
Vậy x=7 ; y=10 và z=13
Vì \(\left(x-y^2+z\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\left(z-3\right)^2\ge0\)
Mà \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)
+\(\text{ }\left(y-2\right)^2=0\)
\(\Rightarrow\text{ }y-2=0\)
\(y=0+2\)
\(y=2\)
+ \(\left(z-3\right)^2=0\)
\(\Rightarrow z-3=0\)
\(z=0+3\)
\(z=3\)
+ \(\left(x-y^2+z\right)^2=0\)
\(\Rightarrow x-y^2+z=0\)
\(x-2^2+3=0\)
\(x-4=0-3\)
\(x-4=-3\)
\(x=-3+4\)
\(x=1\)
Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)