K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Ta có :

\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+..............+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+..............+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)

\(\Rightarrow\dfrac{1}{3}-\dfrac{30}{93}=\dfrac{1}{2x+3}\)

\(\Rightarrow\dfrac{1}{93}=\dfrac{1}{2x+3}\)

\(\Rightarrow2x+3=93\)

\(2x=90\)

\(\Rightarrow x=45\)

Vậy \(x=45\) là giá trị cần tìm

~ Chúc bn học tốt ~

Mình biết làm này nhưng sợ bạn ko hiểu

2              

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)

\(\Leftrightarrow x=45\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

Vậy x = 45.

11 tháng 9 2015

2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3)=2.15/93

1/3-1/5+1/5-1/7+...+1/2x+1-1/2x+3=10/31

1/3-1/2x+3=10/31

1/(2x+3)=1/93

2x+3=93

2x=90

x=45

5 tháng 8 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)

\(\frac{1}{6}-\frac{1}{4x+6}=\frac{15}{93}\)

\(\Rightarrow\frac{4x+6-6}{24x+36}=\frac{15}{93}\)

\(\frac{4x}{4\left(6x+9\right)}=\frac{15}{93}\)

\(\frac{x}{6x+9}=\frac{15}{93}\)

\(\Rightarrow90x+135=93x\)

\(\Rightarrow3x=135\Leftrightarrow x=\frac{135}{3}\)

4 tháng 8 2020

Ta có \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)(đk : \(x\ne0\))

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)

=> \(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)

=> \(\frac{7}{x}=\frac{7}{15}\)

=> x = 15 (tm)

b) \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

=> \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)

=> \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

=> \(\frac{1}{3}-\frac{1}{n+3}=\frac{10}{31}\)

=> \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

=> 2x = 90

=> x = 45 

10 tháng 8 2015

      1-1/6+1/6-1/11+....+1/(5x+1)-1/(5x+2)=2010/2011                                                                                       <=>1-1/(5x+2)=2010/2011                                                                                                                               <=>1/2011=1/(5x+2)                                                                                                                                       <=>x=401

5 tháng 5 2018

=2/3.5+2/5.7+2/7.9+........+2/(2x+1).(2x+3)=15/93.2

=1/3-1/5+1/5-1/7+.........+1/(2x+1)-1/(2x+3)=30/93

=1/3-1/(2x+3)=30/93

=1/(2x+3)=1/3-30/93

1/(2x+3)=31/93-30/93

1/(2x+3)=1/93

(2x+3).1=1.93

2x+3=93

2x=93-3

2x=90

x=90:2

x=45