Hãy biểu diễn :
a) \(\log_{30}8\) qua \(a=\log_{30}3\) và \(b=\log_{30}5\)
b) \(\log_920\) qua \(a=\log2\) và \(b=\log3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)
\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)
\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)
\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)
a) Ta có 1350 = 30.32 . 5 suy ra
log301350 = log30(30. 32. 5) = 1 + 2log303 + log305 = 1 + 2a + b.
b) log2515 = = = = = .
Bạn nào muốn luyện thêm Logarit thì có thể vào website http://tailieutracnghiem.net ấy
Ta có :
\(a=\log_{14}7=\frac{1}{\log_7\left(2.7\right)}=\frac{1}{1+\log_72}\Rightarrow\log_72=\frac{1}{a}-1=\frac{1-1}{a}\)
\(b=\log_{15}5=\frac{\log_75}{\log_7\left(7.2\right)}=\frac{\log_72}{1+\log_72}\Rightarrow\log_75=b\left(1+\log_72\right)=b\left(1+\frac{1-a}{a}\right)=\frac{b}{a}\)
\(\Rightarrow E=\log_{35}28=\frac{\log_727}{\log_735}=\frac{\log_7\left(7.2^2\right)}{\log_7\left(7.5\right)}=\frac{1+\log_72}{1+\log_75}=\frac{1+2.\frac{1-a}{a}}{1+\frac{b}{a}}=\frac{2-a}{a+b}\)
\(log_{a^3}b.log_ba=\dfrac{1}{3}.log_ab.log_ba=\dfrac{1}{3}\)
\(log_{a^{10}}b^5.log_{b^3}a^9=\dfrac{1}{10}.5.log_ab.\dfrac{1}{3}.9.log_ba=\dfrac{3}{2}\)
\(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}=\dfrac{1}{107}.101.log_ab.\dfrac{1}{303}.428.log_ba=\dfrac{4}{3}.log_ab.log_ba=\dfrac{4}{3}\)
a: \(log_{a^3}b\cdot log_ba=\dfrac{1}{3}\cdot log_ab\cdot log_ba=\dfrac{1}{3}\)
b: \(log_{a^{10}}b^5\cdot log_{b^3}a^9\)
\(=\dfrac{1}{10}\cdot log_ab^5\cdot\dfrac{1}{3}\cdot log_ba^9\)
\(=\dfrac{1}{30}\cdot5\cdot log_ab\cdot9\cdot log_ba=\dfrac{45}{30}=\dfrac{3}{2}\)
c: \(log_{a^{107}}b^{101}\cdot log_{b^{303}}a^{428}\)
\(=\dfrac{1}{107}\cdot log_ab^{101}\cdot\dfrac{1}{303}\cdot log_ba^{428}\)
\(=\dfrac{1}{107}\cdot101\cdot log_ab\cdot\dfrac{1}{303}\cdot428\cdot log_ba\)
\(=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\)
Ta có \(a=\log_{25}7=\frac{\log_27}{\log_225}=\frac{\log_27}{2\log_25}=\frac{\log_27}{2b}\Rightarrow\log_27=2ab\)
\(\Rightarrow H=\log_{\sqrt[3]{5}}\frac{49}{8}=\frac{\log_2\frac{49}{8}}{\log_2\sqrt[3]{5}}=\frac{\log_2\frac{7^2}{2^2}}{\log_25^{\frac{1}{3}}}=\frac{2\log_27-3}{\frac{1}{3}\log_25}=\frac{12ab-9}{b}\)
Ta có : \(b=lg2=lg\left(\frac{10}{5}\right)=1-lg5\Rightarrow lg5=1-b\)
\(\Rightarrow G=\log_{125b}30=\frac{lg30}{lg125}=\frac{lg\left(3.10\right)}{lg\left(5^3\right)}=\frac{1+lg3}{3lg5}=\frac{1+a}{3\left(1-b\right)}\)
\(B=\log_{25}15\) biết \(\log_{25}3=a\)
Ta có : \(a=\log_{15}3=\frac{1}{\log_3\left(3.5\right)}=\frac{1}{1+\log_35}\)
\(\Rightarrow\log_35=\frac{1}{a}-1=\frac{1-a}{a}\)
\(\Rightarrow B=\log_{25}15=\frac{\log_315}{\log_325}=\frac{\log_3\left(3.5\right)}{\log_35^2}=\frac{1+\frac{1-a}{a}}{2.\log_35}=\frac{1}{2\left(1-a\right)}\)