Trên mặt phẳng Oxy, tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện \(\left|z-i\right|=\left|\left(1+i\right)z\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-3+4i|=2\Leftrightarrow |(a-3)+i(b+4)|=2\)
\(\Leftrightarrow (a-3)^2+(b+4)^2=4\)
Vậy tập hợp các điểm biểu diễn số phức $z$ nằm trên đường tròn tâm \((3;-4)\) bán kính \(R=2\)
Giả sử z = x + yi, (x,y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.
a) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1.
Vậy tập hợp điểm biểu diễn số phức z là đường tròn tam O, bán kính bằng 1
b) Ta có |z| ≤ 1 ⇔ ≤ 1 ⇔ x2 + y2 ≤ 1.
Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm O, bán kính bằng 1 (kể cả các điểm trên đường tròn) (hình b)
c) Ta có 1 < |z| ≤ 2 ⇔ 1 < ≤ 2 ⇔ 1 < x2 + y2 ≤ 4.
Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm O, bán kính bằng 1 (không kể điểm trên đường tròn này) và đường tròn tâm O, bán kính bằng 2 (kể cả các điểm trên đường tròn này)
d) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1 và phần ảo của z bằng 1 tức y = 1. Suy ra x = 0 và y = 1
Vậy tập hợp các điểm cần tìm là điểm A(0;1)
\(\Leftrightarrow\left(1-2i\right)z-\left(\dfrac{1}{2}-\dfrac{3}{2}i\right)=\left(3-i\right)z\)
\(\Leftrightarrow\left(1-2i\right)z-\left(3-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)
\(\Leftrightarrow\left(-2-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)
\(\Rightarrow z=\dfrac{1-3i}{2\left(-2-i\right)}=\dfrac{1}{10}+\dfrac{7}{10}i\)
\(\Rightarrow A\left(\dfrac{1}{10};\dfrac{7}{10}\right)\) \(\Rightarrow\) tọa độ trung điểm I là \(\left(\dfrac{1}{20};\dfrac{7}{20}\right)\)
Đặt z = x + yi. Từ |z – i| = |(1 + i)z| suy ra :
x 2 + ( y + 1 ) 2 = 2
Các điểm biểu diễn z nằm trên đường tròn tâm I(0; -1) bán kính
Đặt z = x + yi. Từ |z – i| = |(1 + i)z| suy ra :
x 2 + y + 1 2 = 2
Các điểm biểu diễn z nằm trên đường tròn tâm I(0; -1) bán kính
Gọi z = a + bi với a , b ∈ R
Ta có 1 ≤ z - 2 i < 2 ⇔ 1 ≤ a 2 + b - 2 2 < 4
Vậy tập hợp các điểm M là hình tròn tâm I ( 0;2 ) và bán kính R = 2 đồng thời trừ đi hình tròn tâm I ( 0;2 ) bán kính R' = 1 . (Chúng ta thường nhầm lẫn giữa hai đáp án C và D )
Đáp án D
Chọn D.
Gọi M(x; y) là điểm biểu diễn số phức z = x + yi, x, y ∈ R
Gọi A là điểm biểu diễn số phức 2
Gọi B là điểm biểu diễn số phức -2
Ta có: |z – 2| + |z + 2| = 10 ⇔ MB + MA = 10.
Ta có AB = 4.
Suy ra tập hợp điểm M biểu diễn số phức z là Elip với 2 tiêu điểm là A(2; 0), B( -2; 0) tiêu cự AB = 4 = 2c, độ dài trục lớn là 10 = 2a , độ dài trục bé là
Vậy tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10 là elip có phương trình
Giải:
Đặt \(z=a+bi\) với $a,b$ là các số thực
Ta có:
\(|z-i|=|(1+i)z|\Leftrightarrow |a+i(b-1)|=|z||1+i|=|a+bi|\sqrt{2}\)
\(\Leftrightarrow a^2+(b-1)^2=2(a^2+b^2)\)
\(\Leftrightarrow a^2+(b+1)^2=2\)
Vậy tập hợp biểu diễn số phức $z$ nằm trên đường tròn tâm \((0,-1)\) bán kính \(R=\sqrt{2}\)