Lập phương trình bậc hai có nghiệm là :
a) \(1+i\sqrt{2}\) và \(1-i\sqrt{2}\)
b) \(\sqrt{3}+2i\) và \(\sqrt{3}-2i\)
c) \(-\sqrt{3}+i\sqrt{2}\) và \(-\sqrt{3}-i\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 -\(\dfrac{17}{4}x+1=0\)
b) x2-(\(\sqrt{3}+\sqrt{5}\))x+\(\sqrt{15}=0\)
c)x2-6x+7=0
a) x 2 – 2x + 3 = 0;
b) x 2 − 2 3 x + 7 = 0;
c) x 2 + 2 3 x + 5 = 0.
Ta có: \(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4,\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
nên \(2+\sqrt{3}\)và \(2-\sqrt{3}\)là hai nghiệm của phương trình \(X^2-4X+1=0\).
\(x_1+x_2=3+2\sqrt{3}+3-2\sqrt{3}=6\)
\(x_1.x_2=3^2-\left(2\sqrt{3}\right)^2=-3\)
=> Phương trình bậc 2 có dạng: x^2 - 6x - 3 = 0
\(\text{a) }\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8+1+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\\ =\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\\ =\sqrt{13+30\sqrt{2}+30}\\ =\sqrt{43+30\sqrt{2}}\\ =\sqrt{25+18+30\sqrt{2}}\\ =\sqrt{\left(5+\sqrt{18}\right)^2}\\ =5+3\sqrt{2}\)
\(\text{b) }\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\\ =\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\\ =\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\\ =\sqrt{m-1}+1+\sqrt{m-1}-1\\ =2\sqrt{m-1}\)
a) ta có : \(\left(1+i\sqrt{2}\right).\left(1-i\sqrt{2}\right)=1-\left(i\sqrt{2}\right)^2=1+2=3\)
và \(\left(1+i\sqrt{2}\right)+\left(1-i\sqrt{2}\right)=2\)
\(\Rightarrow1+i\sqrt{2}\) và \(1-i\sqrt{2}\) là nghiệm của hệ \(x^2-2x+3=0\)
b) ta có : \(\left(\sqrt{3}+2i\right).\left(\sqrt{3}-2i\right)=3-\left(2i\right)^2=3+4=7\)
và \(\left(\sqrt{3}+2i\right)+\left(\sqrt{3}-2i\right)=2\sqrt{3}\)
\(\Rightarrow\sqrt{3}+2i\) và \(\sqrt{3}-2i\) là nghiệm của hệ \(x^2-2\sqrt{3}x+7=0\)
c) ta có : \(\left(-\sqrt{3}+i\sqrt{2}\right).\left(-\sqrt{3}-i\sqrt{2}\right)=3-\left(i\sqrt{2}\right)^2=3+2=5\)
và \(\left(-\sqrt{3}+i\sqrt{2}\right)+\left(-\sqrt{3}-i\sqrt{2}\right)=-2\sqrt{3}\)
\(\Rightarrow-\sqrt{3}+i\sqrt{2}\) và \(-\sqrt{3}-i\sqrt{2}\) là nghiệm của hệ \(x^2+2\sqrt{3}x+5=0\)
giải pt h.độ giao điểm
có nghiệm x = -1 , x=0, x=2
vẽ hình ra , khoảng giới hạn nằm trong khoangt từ -1 ; 0
S = \(\int_{-1}^0\frac{2x}{x-1}-x^2dx\)= (máy tính STO A)
giải hpt 2 ẩn
a + bln2 = A
a + b = (thay đáp án ) giải ra đc đáp án A cho số hữu tỉ, vậy A đúng