Hãy biểu diễn các số phức \(z\) trên mặt phẳng tọa độ, biết \(\left|z\right|\le2\) và :
a) Phần thực của \(z\) không vượt quá phần ảo của nó
b) Phần ảo của \(z\) lớn hơn 1
c) Phần ảo của \(z\) nhỏ hơn 1, phần thực của \(z\) lớn hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.
b) Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.
c) Đường thẳng y = 2x + 1
d) Nửa đường tròn tâm O bán kính bằng 1, nằm bên phải trục Oy.
a) Tập hợp các điểm thuộc đường thẳng x = -2
b) Tập hợp các điểm thuộc đường thẳng y = 3
c) Tập hợp các điểm thuộc mặt phẳng nằm giữa hai đường thẳng song song x = -1 và x = 2 (hình có gạch sọc)
d) Phần mặt phẳng giới hạn bởi các đường thẳng song song y = 1 và y = 3( kể cả các điểm thuộc hai đường thẳng đó).
e) Các điểm thuộc hình chữ nhật với các cạnh nằm trên các đường thằng x = -2, x = 2 , y = -2, y = 2.
Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.
Giả sử z = x + yi (x, y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diaãn số phức z.
a) Phần thực của z bằng -2, tức là x = -2, y ε R.
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = -2 trên mặt phẳng toạ độ Oxy
b) Ta có x ε R và y = 3
Vậy tập hợp điểm biểu diễn số phức z là đường thẳng y = 3 trên mặt phẳng Oxy.
c) Ta có x ε (-1;2) và y ε R.
Vậy tập hợp số phức z cần tìm là các điểm nằm giữa hai đường thẳng x = -1 và x = 2 trên mặt phẳng Oxy
d) Ta có x ε R và y ε [1;3]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng y = 1 và y = 3
e) Ta có x ε [-2; 2] và y ε [-2; 2]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được vẽ trên hình e (phần gạch sọc).
Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.
Tham khảo
a:
b:
c: