K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)

 

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Lời giải:
a.

$P(x)=2x^4+(x^3-5x^3)+2x^2+(-2x+x)+1$

$=2x^4-4x^3+2x^2-x+1$

b) 
$P(0)=2.0^4-4.0^3+2.0^2-0+1=1$

$P(1)=2-4+2-1+1=0$

c.

$P(1)=0$ (theo phần b) nên $x=1$ là nghiệm của đa thức $P(x)$

$P(-1)=2+4+2+1+1=10\neq 0$ nên $x=-1$ không là nghiệm của đa thức $P(x)$

31 tháng 10 2019

Thu gọn Q(x) = x4 + 7x2 + 1

Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A

11 tháng 5 2022

a, \(P\left(x\right)=5x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b, Thay x = 1 vào Q(x) ta được 

-5 - 1 + 4 - 5 = -7 

c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)

\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)

\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)

11 tháng 5 2022

d đâu bn

16 tháng 6 2020

a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3

            = 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)

            = 5x^3 - x^2 - 17/5x + 5

Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2

        = -5x^3 + (2x + 2x) - x^2 + (-3 - 2)

        = -5x^3 + 4x - x^2 - 5

b) M(x) = P(x) + Q(x)

            =  5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5

            = (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x)  + (5 - 5)

            = -2x^2 + 3/5x

N(x) = P(x) - Q(x)

        = 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)

        = 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5

        = (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)

        = 10x^3 - 37/5x + 10

c) M(x) = -2x^2 + 3/5x = 0

<=> -x(2x - 3/5) = 0

<=> -x = 0 hoặc 2x - 3/5 = 0

<=> x = 0 hoặc 2x = 3/5

<=> x = 0 hoặc x = 3/10

Vậy: nghiệm của M(x) là 3/10

`a,`

`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`

`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`

`P(x)=x^4+5x^3-x^2-x+1`

`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`

`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`

`Q(x)=x^4+2x^3-2x^2-3x+2`

`b,`

`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`

`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`

`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`

`P(x)-Q(x)=3x^3+x^2+2x-1`

25 tháng 4 2022

\(M\left(x\right)+N\left(x\right)=-5x^3+3x^4+7-9x-2x^4+3x-5x^3-7\)

\(M\left(x\right)+N\left(x\right)=x^4-10x^3-12x\)

25 tháng 4 2022

phép + hay - vậy bạn ?