K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

d/

\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)

Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.

Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?

NV
20 tháng 5 2020

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

TL
1 tháng 12 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

Từ đó suy ra f'(x)=0

a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;

c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0

d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

4 tháng 4 2017

a) f'(x) = - 3sinx + 4cosx + 5. Do đó

f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5

<=> sinx - cosx = 1. (1)

Đặt cos φ = , (φ ∈) => sin φ = , ta có:

(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1

<=> x - φ = + k2π <=> x = φ + + k2π, k ∈ Z.

b) f'(x) = - cos(π + x) - sin = cosx + sin.

f'(x) = 0 <=> cosx + sin = 0 <=> sin = - cosx <=> sin = sin

<=> = + k2π hoặc = π - x + + k2π

<=> x = π - k4π hoặc x = π + k, (k ∈ Z).


12 tháng 12 2020

Đề đúng chưa v

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).