K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2-5x+3}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x-3\right)}{x-1}=\lim\limits_{x\rightarrow1}2x-3=2\cdot1-3=-1\)

f(1)=4

=>\(\lim\limits_{x\rightarrow1}f\left(x\right)< >f\left(1\right)\)

=>Hàm số bị gián đoạn tại x=1

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(\lim\limits_{x\to 1+}f(x)=\lim\limits_{x\to 1+}(5x-2)=3\)

\(\lim \limits_{x\to 1-}f(x)=\lim \limits_{x\to 1-}(2+2x)=4\)

\(\Rightarrow \lim\limits_{x\to 1+}f(x)\neq \lim \limits_{x\to 1-}f(x)\)

Do đó hàm số không liên tục tại $x=1$

18 tháng 11 2023

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}2x+2=2\cdot1+2=4\)

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}5x-2=5-2=3\)

\(f\left(1\right)=2+2\cdot2=4\)

Vì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)< >\lim\limits_{x\rightarrow1^+}f\left(x\right)\)

nên hàm số bị gián đoạn tại x=1

17 tháng 11 2023

loading...loading...loading...  

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Đề lỗi công thức toán rồi bạn. Không nhìn thấy được biểu thức hiển thị.

19 tháng 11 2023

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{2-\sqrt{2x^2-4}}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4-2x^2+4}{2+\sqrt{2x^2-4}}\cdot\dfrac{1}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{-2\left(x^2-4\right)}{-\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(2+\sqrt{2x^2-4}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{2\left(x+2\right)}{2+\sqrt{2x^2-4}}=\dfrac{2\left(2+2\right)}{2+\sqrt{2\cdot2^2-4}}\)

\(=\dfrac{2\cdot4}{2+2}=\dfrac{8}{4}=2\)

\(f\left(2\right)=1\)

=>\(\lim\limits_{x\rightarrow2}f\left(x\right)< >f\left(2\right)\)

=>Hàm số bị gián đoạn tại x=2

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(\lim\limits_{x\to 3}f(x)=\lim\limits_{x\to 3}\frac{9-x^2}{3-x}=\frac{(3-x)(3+x)}{3-x}=\lim\limits_{x\to 3}(3+x)=3+3=6=f(3)\)

Do đó hàm số liên tục tại $x=3$.

18 tháng 11 2023

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{9-x^2}{3-x}=\lim\limits_{x\rightarrow3}3+x=3+3=6\)

\(f\left(3\right)=6\)

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)

=>Hàm số liên tục tại x=3

19 tháng 11 2023

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{2-x}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{-\left(x-2\right)}=\lim\limits_{x\rightarrow2}-\left(x+2\right)\)

\(=-\left(2+2\right)=-4\)

\(f\left(2\right)=2-7=-5\)

=>\(\lim\limits_{x\rightarrow2}f\left(x\right)< >f\left(2\right)\)

=>Hàm số gián đoạn tại x=2

Khi \(x\ne\)2 thì \(f\left(x\right)=\dfrac{x^2-4}{2-x}\) hoàn toàn xác định nên hàm số liên tục trên các khoảng \(\left(-\infty;2\right);\left(2;+\infty\right)\)

 

19 tháng 11 2023

\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)

\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)

Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)

=>Hàm số liên tục tại x=-3

19 tháng 11 2023

\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{2x-9}-1}{5-x}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{2x-9-1}{\sqrt{2x-9}+1}\cdot\dfrac{1}{5-x}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{2\left(x-5\right)}{-\left(x-5\right)\left(\sqrt{2x-9}+1\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{-2}{\sqrt{2x-9+1}}=\dfrac{-2}{\sqrt{10-9}+1}=-\dfrac{2}{2}=-1\)

f(5)=3

=>\(\lim\limits_{x\rightarrow5}f\left(x\right)< >f\left(5\right)\)

=>Hàm số bị gián đoạn tại x=5