K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

b: ta có: ΔAEM=ΔAFM

nên AE=AF;ME=MF

=>AM là đường trung trực của EF

hay AM\(\perp\)EF

c: Xét ΔMEI vuông tại E và ΔMFK vuông tại F có 

ME=MF

\(\widehat{EMI}=\widehat{FMI}\)

Do đó; ΔMEI=ΔMFK

Suy ra:MI=MK

hay ΔMIK cân tại M

B E A F C M I 1 2 1 N2

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

d) Qua F kẻ đg thẳng // với CE cắt AM tại H

+ HF là đg trung bình của ΔACI

HF=\(\frac{1}{2}\)CI⇒HF=12CI

+ ΔABM cân tại M

=> đg cao ME đồng thới là đg trung tuyến

=> AE = BE

+ Tương tự : AF = CF

+ EF là đg trung bình của ΔABC

=> EF // BC

+ Tứ giác EFCM là hbh

=> MK = FK

+ HF // CE => HF // IK

+ IK là đg trung bình của ΔMHF

\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)

IK=12HFCI=4IK

15 tháng 5 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

hok tốt!

28 tháng 4 2021

Ta có:

AM là phân giác của \(\widehat{BAC}\) 

Mà trong tam giác cân đường phân giác xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là cũng là đướng trung tuyến ứng với cạnh đáy

⇒M là trung điểm của BC

⇒MC=MB=\(\dfrac{BC}{2}\)=\(\dfrac{15}{2}\)=7,5

Mặc khác trong một tam giác cân đường trung tuyến ứng với cạnh đáy đồng thời là đường trung trực của cạnh đó

Do đó AM là đường trung trực của đoạn thẳng BC

Áp dụng định lý Py-ta-go cho ΔAMC vuông tại M ta có:

AC2=AM2+MC2

132=AM2+7,52

169=AM2+56,25

hay AM2=169-56,25=112,75

⇒AM=\(\sqrt{112,75}\)\(\approx\)10,6

Vậy AM\(\approx\)10,6

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

13 tháng 7 2020

a) Xét tam giác ABD và tam giác HBD có : 
               góc ABD = góc HBD (BD là tia pg)
             góc BAD = góc BHD=90 độ (gt)
                  BD là cạnh chung
=> Tam giác ABD  = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )

b) Xét tam giác DHC có : 
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD