Giải và biện luận bất phương trình sau theo tham số m
\(\left(m-1\right)\sqrt{x}\le0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m\left(x-m\right)\le4x+5.\left(1\right)\\ \Leftrightarrow mx-m^2-4x-5\le0.\\ \Leftrightarrow\left(m-4\right)x\le5+m^2.\circledast\)
+) Nếu \(m-4>0.\Leftrightarrow m>4.\)
Khi \(\circledast\) có nghiệm: \(x\le\dfrac{5+m^2}{m-4}.\)
+) Nếu \(m-4< 0.\Leftrightarrow m< 4.\)
Khi \(\circledast\) có nghiệm: \(x\ge\dfrac{5+m^2}{m-4}.\)
+) Nếu \(m-4=0.\) \(\Leftrightarrow m=4.\)
Thay vào \(\circledast\) ta có:
\(0x\le5+4^2.\Leftrightarrow0x\le21\) (vô lý).
Kết luận:
Với \(m>4\) thì (1) có tập nghiệm \(S=\) \((-\infty;\dfrac{5+m^2}{m-4}].\)
Với \(m< 4\) thì (1) có tập nghiệm \(S=\) \([\dfrac{5+m^2}{m-4};+\infty).\)
Với \(m=4\) thì (1) có tập nghiệm \(S=\) \(\phi.\)
\(mx^2+\left(m+1\right)x-2m\le0\) (1)
Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)
Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m.
Ngoài ra, biệt thức
\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\) \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :
- Khi m < 0, bất phương trình (1) có tập nghiệm
T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)
- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+
- Khi m>0, bất phương trình (1) có tập nghiệm
T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)
Điều kiện của bất phương trình là x ≥ 0
Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0
Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0
Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)
Nếu m > 1 thì tập nghiệm của bất phương trình là {0}
\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)
Với \(m\ne2;m\ne3\)
\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)
Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)
Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)
Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\) (1)
Xét các bất phương trình thành phần
\(\left(x^2-1\right)\left(x-2\right)\ge0\) (a)
\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\) (b)
Ta có T(1)=T(a)\(\cap\) T(b)
Lập bảng xét dấy
\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)
x | -\(\infty\) -1 1 2 +\(\infty\) |
f(x) | - 0 + 0 - 0 + |
Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)
Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1
- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)
Xét các trường hợp sau :
+ Trường hợp 1 :
\(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
+ Trường hợp 2
\(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow\) \(-1\le a\le0\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)
+ Trường hợp 3
\(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\) \(\Leftrightarrow\) \(\frac{1}{2}\le a\le1\)
Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Trường hợp 4
1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)
+ Trường hợp 5 :
a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)
- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)
Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm
Từ đó ta kết luận :
+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)
+ Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)
+ Khi 0<a<\(\frac{1}{2}\) hệ có tập nghiệm T(1) = \(\left[a;1\right]\)
+ Khi \(\frac{1}{2}\)\(\le\)a \(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)
+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)
1.
\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)
Do \(m^2+4>0\) ; \(\forall m\)
\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)
2.
\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)
- Với \(m>1\Rightarrow m-1>0\)
\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)
- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)
Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)
Điều kiện xác định \(x\ge0\).
Do \(\sqrt{x}\ge0\) với mọi \(x\ge0\) nên BPT có nghiệm khi:
\(m-1\le0\Leftrightarrow m\le1\).
vậy ta có các trường hợp sau:
- Nếu \(m\le1\) bất phương trình nghiệm đúng với mọi \(x\ge0\).
- Nếu \(m>1\) bất phương trình vô nghiệm.