cho đa thức A(x)= 2x^4 -3x^3 + 1/2 - 4x. tìm đa thức B(x) va đa thức C(x)' sao cho
a) A(x) + B(x)= 4x^5 - 2x^2 - 1
b) A(x) - C(x)= 2x^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A(x)=2x^3+x^2+4x+1
B(x)=-2x^3+x^2+3x+2
b: M(x)=A(x)+B(x)
=2x^3+x^2+4x+1-2x^3+x^2+3x+2
=2x^2+7x+3
c: M(x)=0
=>2x^2+7x+3=0
=>2x^2+6x+x+3=0
=>(x+3)(2x+1)=0
=>x=-3 hoặc x=-1/2
Để tìm đa thức B(x), ta cần lấy A(x) trừ đi đa thức 2x^3 - x^2 + 3x + 1
A(x) - (2x^3 - x^2 + 3x + 1) = (-3x^3 + 4x + 5x^3 + x^2 - 8x-2)- (2x^3-x^2 + 3x + 1)
=-3x^3 + 4x + 5x^3 + x^2 - 8x-2- 2x^3 + x^2-3x-1
= 2x^3 + 6x
Vậy đa thức B(x) = -2x^3 - 6x.
a. f(x)=2x^2-x+3-4x
=2x^2-5x+3
g(x)=4x^2+2x+x^4-2+3x
=x^4+4x^2+5x-2
b.f(x)+g(x)=2x^2-5x+3+x^4+4x^2+5x-2
=x^4+6x^2+1
f(x)-g(x)=2x^2-5x+3-(x^4+4x^2+5x-2)
=2x^2-5x+3-x^4-4x^2-5x+2
=-x^4-2x^2-10x+5
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)
\(=2x^3-x^2-2x+1\)
a) \(A\left(x\right)+B\left(x\right)=4x^5-2x^2-1\)
\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-\left(2x^4-3x^3+\dfrac{1}{2}-4x\right)\)
\(B\left(x\right)=4x^5-2x^2-1-2x^4+3x^3-\dfrac{1}{2}+4x\)
Vậy \(B\left(x\right)=4x^5-2x^4+3x^3-2x^2+4x-\dfrac{3}{2}\)
b) \(A\left(x\right)-C\left(x\right)=2x^3\)
\(\Rightarrow C\left(x\right)=2x^3+A\left(x\right)\)
\(\Rightarrow C\left(x\right)=2x^3+2x^4-3x^3+\dfrac{1}{2}-4x\)
Vậy \(C\left(x\right)=2x^4-x^3-4x+\dfrac{1}{2}\)
a)
Có: