1-2/3.5-3/5.8-4/8.12-......-10/47.57
Giúp mk câu này nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = \(\frac{36}{1\cdot7}+\frac{36}{7\cdot13}+...+\frac{36}{94\cdot100}=\frac{36}{6}\left[\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+...+\frac{1}{94\cdot100}\right]\)
\(=6\left[1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+...+\frac{1}{94}-\frac{1}{100}\right]=6\left[1-\frac{1}{100}\right]\)
\(=6\cdot\frac{99}{100}=\frac{297}{50}\)
F = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{\left[3a+2\right]\left[3a+5\right]}\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3a+2}-\frac{1}{3a+5}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3a+5}\right]=\frac{1}{6}-\frac{1}{9a+15}\)
G = \(\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{4}{8\cdot12}+\frac{5}{12\cdot17}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{12}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
A = 3 (1/3 - 1/5 + 1/5 - 1/8 + 1/8 - 1/12 + 1/12 - 1/17) = 3(1/3 - 1/17) = 14/17
A = \(\frac{6}{3}.5+\frac{9}{5}.8+\frac{12}{8}.12+\frac{15}{12}.17\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(=3\times\frac{14}{51}\)
\(=\frac{14}{17}\)
CHÚC BẠN HỌC TỐT !!!
\(A=\frac{6}{3.5}+\frac{9}{5.8}+\frac{12}{8.12}+\frac{15}{12.17}\)
\(A=3.\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{17}\right)< 3.\frac{1}{3}=1\)
=> A < 1
Ta có :
\(A=\frac{6}{3.5}+\frac{9}{5.8}+\frac{12}{8.12}+\frac{15}{12.17}\)
\(A=3.\left(\frac{2}{3.5}\right)+3.\left(\frac{3}{5.8}\right)+3.\left(\frac{4}{8.12}\right)+3.\left(\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(A=3.\frac{14}{51}\)
\(A=\frac{14}{17}< 1\)
Vậy A < 1
_Chúc bạn học tốt_
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Câu 2:
\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Câu 3:
\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)
\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)
Câu 5:
\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)
Rút gọn phân số:
\(\frac{1.2+1.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều!
\(\frac{1.2+1.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)
=\(\frac{1.2}{2.3}\)+\(\frac{1.4}{4.6}\)+\(\frac{3.6}{6.9}\)+\(\frac{4.8}{8.12}\)
= \(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{3}\)+\(\frac{1}{3}\)
= \(\frac{2}{6}+\frac{1}{6}+\frac{2}{6}+\frac{2}{6}\)
=\(\frac{7}{6}\)
Mình nghĩ đề bài phải là:
\(\frac{1.2+2.4+3.6+4.8}{2.3+4.6+6.9+8.12}\) *2.3 + 4.6 + 6.9 + 8.12 = 3.(1.2 + 2.4 + 3.6 + 4.8)*
\(=\)\(\frac{1\left(1.2+2.4+3.6+4.8\right)}{3\left(1.2+2.4+3.6+4.8\right)}\)
\(=\)\(\frac{1}{3}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-...+\dfrac{1}{47}-\dfrac{1}{57}\right)\)
\(=1-\dfrac{18}{57}=\dfrac{39}{57}=\dfrac{13}{19}\)