Tìm các căn bậc hai phức của các số sau : \(-7;-8;-12;-20;-121\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
(I) Trên tập hợp các số phức thì phương trình bậc hai luôn có nghiệm.
\(\sqrt{2}\approx1.4142\)
\(\sqrt{5}=2.236\)
\(\sqrt{9}=3\)
\(\sqrt{36}=6\)
\(\sqrt{-7}=\varnothing\)
Căn bậc hai số học của 17 là \(\sqrt{17}\)
Căn bậc hai của 17 là \(\pm\sqrt{17}\)
Căn bậc hai số học của 19 là \(\sqrt{19}\)
Căn bậc hai của 19 là \(\pm\sqrt{19}\)
Bài 1. Tính căn bậc hai số học của các số sau:
1) 36=\(\sqrt{36}=4\)
2) 81\(\sqrt{81}=9\)
3) 121=\(\sqrt{121}=11\)
4) 144=\(\sqrt{144}=12\)
5) 0,16=\(\sqrt{0,16}=0,4\)
7) 29=\(\sqrt{29}~5,39\)
8) 0=\(\sqrt{0}=0\)
Bài 2:
1: \(\sqrt{6}< \sqrt{41}\)
2: \(\sqrt{19}>\sqrt{4}\)
3: \(\sqrt{21}>\sqrt{5}\)
4: \(\sqrt{7}< \sqrt{51}\)
a) \(\sqrt {15} \) đọc là: căn bậc hai số học của mười lăm
\(\sqrt {27,6} \) đọc là: căn bậc hai số học của hai mươi bảy phẩy sáu
\(\sqrt {0,82} \) đọc là: căn bậc hai số học của không phẩy tám mươi hai
b) Căn bậc hai số học của 39 viết là: \(\sqrt {39} \)
Căn bậc hai số học của \(\frac{9}{{11}}\) viết là: \(\sqrt {\frac{9}{{11}}} \)
Căn bậc hai số học của \(\frac{{89}}{{27}}\) viết là: \(\sqrt {\frac{{89}}{{27}}} \)
Căn bậc hai của 4/9 là 2/3 và (-2)/3 (vì (2/3)2 = 4/9 và(-2/3)2 = 4/9)
Căn bậc hai của 0,25 là 0,5 và -0,5 (vì 0,52 = 0,25 và (-0,5)2 = 0,25)
± i√7 ; ± i2√2 ; ± i2√3; ± i2√5 ; ± 11i