Bài 1:
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a},a+b+c\ne0\)
Tính \(a\dfrac{^3b^2c^{1930}}{a^{1935}}\)
Bài 2 :
a) So sánh: 9^10 với \(8^9+7^9+6^9+...+1^9\)
b) \(\left(36^{36}-9^{10}\right)⋮45\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=(8 2/7-4 2/7)-3 4/9`
`=8+2/7-4-2/7-3-4/9`
`=4-3-4/9`
`=1-4/9=5/9`
`B=(10 2/9-6 2/9)+2 3/5`
`=10+2/9-6-2/9+2+3/5`
`=4+2+3/5`
`=6+3/5=33/5`
Bài 2:
`a)5 1/2*3 1/4`
`=11/2*13/4`
`=143/8`
`b)6 1/3:4 2/9`
`=19/3:38/9`
`=19/3*9/38=3/2`
`c)4 3/7*2`
`=31/7*2`
`=62/7`
Bài 1:
\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\)
\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\)
\(A=4-\dfrac{31}{9}\)
\(A=\dfrac{5}{9}\)
\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\)
\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\)
\(B=4+\dfrac{13}{5}\)
\(B=\dfrac{33}{5}\)
Mik làm Bài 2 nhé ~
Bài 2 :
a) \(x-\dfrac{1}{2}=-\dfrac{1}{10}\)
\(x=-\dfrac{1}{10}+\dfrac{1}{2}\)
\(x=\dfrac{2}{5}\)
b) \(\dfrac{2}{3}x-\dfrac{7}{6}=\dfrac{5}{2}\)
\(\dfrac{2}{3}x=\dfrac{5}{2}+\dfrac{7}{6}\)
\(\dfrac{2}{3}x=\dfrac{11}{3}\)
\(x=\dfrac{11}{3}:\dfrac{2}{3}\)
\(x=\dfrac{11}{3}.\dfrac{3}{2}\)
\(x=\dfrac{11}{2}\)
c) \(2,5-\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=2,5-\dfrac{3}{4}\)
\(\left(\dfrac{1}{8}x+\dfrac{1}{2}\right)=\dfrac{5}{2}-\dfrac{3}{4}\)
\(\dfrac{1}{8}x+\dfrac{1}{2}=\dfrac{7}{4}\)
\(\dfrac{1}{8}x=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\dfrac{1}{8}x=\dfrac{5}{4}\)
\(x=10\)
Bài 1:
a) \(\dfrac{-4}{11}.\dfrac{7}{9}+\dfrac{-4}{11}.\dfrac{2}{9}-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}.1-\dfrac{7}{11}\)
\(=\dfrac{-4}{11}-\dfrac{7}{11}\)
\(=-1\)
b) \(\dfrac{3}{5}:\dfrac{-7}{10}+0,5-\left(\dfrac{-9}{14}\right)\)
\(=\dfrac{-6}{7}+\dfrac{1}{2}+\dfrac{9}{14}\)
\(=\dfrac{2}{7}\)
c) \(\dfrac{3}{5}-\dfrac{8}{5}:\left(5,25+75\%\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:\left(\dfrac{21}{4}+\dfrac{3}{4}\right)\)
\(=\dfrac{3}{5}-\dfrac{8}{5}:6\)
\(=\dfrac{3}{5}-\dfrac{4}{15}\)
\(=\dfrac{1}{3}\)
a: \(=\dfrac{14-2+9}{32}\cdot\dfrac{4}{5}=\dfrac{21}{5}\cdot\dfrac{1}{8}=\dfrac{21}{40}\)
b: \(=10+\dfrac{2}{9}+2+\dfrac{3}{5}+6+\dfrac{2}{9}=18+\dfrac{47}{45}=\dfrac{857}{45}\)
c: \(=\dfrac{3}{10}-\dfrac{12}{5}+\dfrac{1}{10}=\dfrac{4}{10}-\dfrac{12}{5}=\dfrac{2}{5}-\dfrac{12}{5}=-2\)
d: \(=\dfrac{-25}{30}\left(\dfrac{37}{44}+\dfrac{13}{44}-\dfrac{6}{44}\right)=\dfrac{-25}{30}\cdot1=-\dfrac{5}{6}\)
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
Câu a)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\geq \frac{9}{a+2b}\) (1)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\geq \frac{9}{b+2c}\)(2)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\geq \frac{9}{c+2a}\) (3)
Lấy \((1)+2.(2)+3.(3)\) ta có:
\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{2}{b}+\frac{2}{c}+\frac{2}{c}+\frac{3}{c}+\frac{3}{a}+\frac{3}{a}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Leftrightarrow \frac{7}{a}+\frac{4}{b}+\frac{7}{c}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
Câu b)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{4}{b}\geq \frac{(1+2)^2}{a+b}=\frac{9}{a+b}\)
\(\Rightarrow \frac{1}{3a}+\frac{4}{3b}\geq \frac{3}{a+b}(1)\)
\(\frac{1}{3b}+\frac{1}{2c}+\frac{1}{2c}\geq \frac{9}{3b+4c}\)
\(\Rightarrow \frac{2}{3b}+\frac{2}{c}\geq \frac{18}{3b+4c}\) (2)
\(\frac{1}{c}+\frac{1}{3a}+\frac{1}{3a}\geq \frac{9}{c+6a}\) (3)
Từ (1); (2); (3) cộng theo vế:
\(\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)
(đpcm)
Dấu bằng xảy ra khi \(a=\frac{b}{2}=\frac{c}{3}\)
Câu c)
BĐT cần chứng minh tương đương với:
\(\frac{b+c+a}{a}+\frac{2a+c}{b}+\frac{4(a+b)}{a+c}\geq 10\) (*)
Áp dụng BĐT AM-GM:
\(\text{VT}=\frac{b}{a}+\frac{c+a}{2a}+\frac{c+a}{2a}+\frac{a}{b}+\frac{a+c}{2b}+\frac{a+c}{2b}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}\)
\(\geq 10\sqrt[10]{\frac{ba(c+a)^4(a+b)^4}{16a^3b^3(a+c)^4}}=10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\)
Theo AM-GM: \((a+b)^2\geq 4ab\Rightarrow (a+b)^4\geq 16a^2b^2\)
\(\Rightarrow \text{VT}\geq 10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\geq 10\)
Vậy (*) được cm. Ta có đpcm. Dấu bằng xảy ra khi a=b=c
Bài 2:
a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)
\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)
c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)
d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)
\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
2:
a: 2/9-x=-5/9
=>x=2/9+5/9=7/9
b: x-7/13=1/2
=>x=1/2+7/13=27/26
câu a
\(\dfrac{7}{4}+\dfrac{3}{2}+\dfrac{-9}{16}\\ =\dfrac{28}{16}+\dfrac{24}{16}-\dfrac{9}{16}=\dfrac{43}{16}\)
câu b
\(-\dfrac{2}{7}+\dfrac{3}{5}+\dfrac{9}{7}+\dfrac{-18}{5}\\ =-\dfrac{10}{35}+\dfrac{21}{35}+\dfrac{45}{35}-\dfrac{126}{35}\\ =-\dfrac{70}{35}=-2\)
câu c
\(-\dfrac{5}{13}+\dfrac{11}{10}-\dfrac{-9}{10}+\dfrac{-8}{13}\\ =-\dfrac{5}{13}+\dfrac{11}{10}+\dfrac{9}{10}-\dfrac{8}{13}\\ =-\dfrac{50}{130}+\dfrac{143}{130}+\dfrac{117}{130}-\dfrac{80}{130}\\ =\dfrac{130}{130}=1\)
bài 2
câu a
\(\dfrac{2}{9}-x=-\dfrac{5}{9}\\ x=\dfrac{2}{9}-\dfrac{-5}{9}\\ x=\dfrac{7}{9}\)
câu b
\(x+\dfrac{-7}{13}=\dfrac{1}{2}\\ x=\dfrac{1}{2}-\dfrac{-7}{13}\\ x=\dfrac{13}{26}+\dfrac{14}{26}\\ x=\dfrac{17}{26}\)
Câu 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\) \(\left(a+b+c\ne0\right)\)
Ta có: \(\dfrac{a^3b^2c^{1930}}{a^{1935}}=\dfrac{a^3a^2a^{1930}}{a^{1935}}=\dfrac{a^{1935}}{a^{1935}}=1\)
Vậy \(\dfrac{a^3b^2c^{1930}}{a^{1935}}=1\)