K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Qua S kẻ đường Sx song song SD

=>Sx vuông góc SA

SC vuông góc CD

=>SC vuông góc Sx

((SAB);(SCD))=góc ASC

b: (SBD) căt (SAB)=SB

Kẻ DA vuông góc AB

mà DA vuông góc SA

nên DA vuông góc (SAB)

=>DA vuông góc SB

Kẻ AK vuông góc SB

=>((SBD);(SAB))=góc AKD

c: (SBC) giao (SCD)=SC
Kẻ BH vuông góc SC

Qua H kẻ HF//CD

=>HF vuông góc SC

=>((SBC);(SCD))=góc BHF

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

23 tháng 5 2020

3+? =2 trả lời đc thì giải đc

NV
21 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)

\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)

\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)

\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)

\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

b.

\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD) 

\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Qua S kẻ đường thẳng d song song AD

Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)

Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)

\(AE=\dfrac{AB}{2}=a\)

\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)

21 tháng 4 2021

\(tan\widehat{ASE}=\sqrt{3}\) chứ aj?

5 tháng 6 2018

Đáp án B

13 tháng 6 2018

Chọn B

6 tháng 6 2017

Ta có tam giác ACD vuông cân tại C và CA = CD = 2a

⇒ S A A C D = 4 a 2 . Gọi H là trung điểm của AB

Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy

⇒ S H ⊥ A B C D ;   S H = a 3 .   V a y   S S A C D = 4 a 3 3 3

Đáp án cần chọn là A

6 tháng 4 2017

Đáp án A

Ta có tam giác ACD vuông cân tại C và  C A = C D = 2 a 2

⇒ S ∆ A C D = 4 a 2 . Gọi H là trung điểm của AB

Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy

⇒ S H ⊥ ( A B C D ) ; S H = a 3 .

Vậy S S . A C D = 4 a 3 3 3 .