\(\Delta ABC\) (góc B nhọn);\(AH\perp BC\) (\(H\in BC\)); AD là phân giác của góc BAC ;AM là trung tuyến;CM là trung điểm .CMR tia AD là nằm giữa 2 tia AH và AM
HELP ME ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét tứ giác AFHE có
góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
=>góc FAH=góc FEH
=>goc BAD=góc BEF
hứng minh được AEB \backsim AFCAEB∽AFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC
Ta có: \Delta AEF\backsim\Delta ABCΔAEF∽ΔABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔABE∼ΔACF(cmt)
nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AB=AE\cdot AC\)(đpcm)
c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)
nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có
\(\widehat{DCA}\) chung
Do đó: ΔEBC∼ΔDAC(g-g)
b
Δ ABD ⊥ tại D có DE là đường cao.
=> \(AD^2=AE.AB\) (hệ thức lượng) (1)
Δ ADC ⊥ tại C có DC là đường cao.
=> \(AD^2=AF.AC\) (hệ thức lượng) (2)
Từ (1), (2) suy ra: \(AE.AB=AF.AC\left(=AD^2\right)\)
Xét Δ AEF và Δ ACB có:
\(\widehat{EAF}=\widehat{CAB}\) (góc chung)
\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\left(cmt\right)\)
=> Δ AEF đồng dạng Δ ACB (c.g.c)
Cho \(\Delta ABC\)vuông tại A. AB<AC thỏa mãn BC2=4AB.AC. Tính số đo các góc nhọn của \(\Delta ABC\)
Theo định lý Pi-ta-go, ta có \(BC^2=AB^2+AC^2\)
Vậy nên theo bài ra ta có \(AB^2+AC^2=4AB.AC\)
\(\Rightarrow AB^2-4AB.AC+AC^2=0\)
\(\Rightarrow\left(\frac{AB}{AC}\right)^2-4.\frac{AB}{AC}+1=0\)
Đặt \(\frac{AB}{AC}=k\Rightarrow k^2-4k+1=0\Rightarrow\orbr{\begin{cases}k=2+\sqrt{3}\\k=2-\sqrt{3}\end{cases}}\)
Do AB < AC nên \(\frac{AB}{AC}< 1\), vậy ta lấy \(k=2-\sqrt{3}\)
Với \(k=2-\sqrt{3}\Rightarrow tan\widehat{ACB}=2-\sqrt{3}\Rightarrow\widehat{ACB}=15^o\Rightarrow\widehat{ABC}=75^o\)
Cô Huyền giúp em rõ hơn được không, em lớp 8 chưa học \("\tan"\)