Tính : A = \(1+10^2+10^4+10^6+...+10^{2016}\)
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/5 + 2/7 - 7/10
= (4/5 - 7/10) + 2/7
= 1/10 + 2/7
= 27/70
b) 1/12 - (-1/6 - 1/4)
= 1/12 + 1/6 + 1/4
= 1/4 + 1/4
= 1/2
Bài 3
\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)
\(=1+\frac{5}{n+1}\)
Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)
Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
* \(n+1=1\Rightarrow n=0\)
* \(n+1=-1\Rightarrow n=-2\)
* \(n+1=5\Rightarrow n=4\)
* \(n+1=-5\Rightarrow n=-6\)
Vậy \(n\in\left\{0;-2;4;-6\right\}\)
Bài 2:
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)
\(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
\(=\left(\dfrac{1}{10}+\dfrac{9}{10}\right)+\left(\dfrac{2}{10}+\dfrac{8}{10}\right)+\left(\dfrac{3}{10}+\dfrac{7}{10}\right)+\left(\dfrac{4}{10}+\dfrac{6}{10}\right)+\dfrac{5}{10}\)
\(=1+1+1+1+\dfrac{5}{10}\)
\(=4+\dfrac{5}{10}\)
\(=\dfrac{45}{10}\)
\(13,25:0,5+13,25:0,25+13,25:0,125+13,25\times6\)
\(=13,25:\dfrac{1}{2}+13,25:\dfrac{1}{4}+13,25:\dfrac{1}{8}+13,25\times6\)
\(=13,25\times2+13,25\times4+13,25\times8+13,25\times6\)
\(=13,25\times\left(2+4+8+6\right)\)
\(=13,25\times20\)
\(=265\)
đây nhé!!
1+2-3-4+5+6-7-8+9+10-........+2010-2011-2012+2013+2014-2015-2016+2017
=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+....+(2010-2011-2012+2013)+(2014-2015-2016+2017)
=1+0+0+0+.....+0+0
=1.
ĐÚNG THÌ CHO MINK NHA!!^_^
a: =1/2(3/4+1)=1/2x7/4=7/8
b: =9/8-1/6=27/24-4/24=23/24
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B
Từ đề bài, ta có:
\(10^2A=10^2+10^4+10^6+...+10^{2018}\)
\(\Rightarrow100A-A=99A=10^{2018}-1\)
\(\Rightarrow A=\dfrac{10^{2018}-1}{99}\)
A = 1 + 102 + 104 + 106 + ... + 102016
\(\Rightarrow\)10A = 10 + 103 + 105 + ... + 102017
\(\Rightarrow\) 10A - A = 102017 - 1
\(\Rightarrow\) 9A = 102017 - 1
\(\Rightarrow\) A = \(\dfrac{10^{2017}-1}{9}\)