CMR : \(333^{555^{777}}+777^{555^{333}}⋮10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Ta có:
5552≡5 (mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
:v
Ta có :
\(555^2≡5\) (mod 10)
\(555^3≡5\) (mod 10)
\(555^5=555^2.555^3≡5.5≡5\) (mod 10)
=> \(555^777≡5\) (mod 10)
=> \(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=333^2.333^3≡3\) (mod 10)
Vậy chữ số tận của \(333^{555^{777}}\) là 3 (1)
Làm tương tự ta được \(777^{555^{333}}\) có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra:
\(333^{555^{777}}+777^{555^{333}}\)3 có chữ số tận cùng là 0
=> \(333^{555^{777}}+777^{555^{333}}\) chia hết cho 10.
Vậy B chia hết cho 10. ( đpcm )
555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
Ta có :
\(555^2\equiv5\left(mod10\right)\)
\(555^3\equiv5\left(mod10\right)\)
\(555^5=555^2\cdot555^3\equiv5\cdot5\equiv5\left(mod10\right)\)
\(\Rightarrow555^{777}\equiv5\left(mod10\right)\)
Suy ra :
\(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=3332\cdot3333\equiv3\left(mod10\right)\)
Vậy chữ số tận cùng của \(333^{555^{777}}\) là 3 (1)
Tương tự : \(777^{555^{333}}\) có chữ số chữ số tận cùng là 7 (2)
Từ (1) ; (2) suy ra :
\(333^{555^{777}}\)\(+777^{555^{333}}\) có chữ số tận cùng là 0
Vậy \(333^{555^{777}+}777^{555^{333}}\) \(⋮10\)
Ta thấy 555 chia 4 dư 3 nên\(555^{777}\)và \(555^{333}\)chia 4 dư 3
Đặt\(555^{777}=4q_1+3;555^{333}=4q_2+3\)
Khi đó \(333^{555^{777}}+777^{555^{333}}=333^{4q_1+3}+777^{4q_2+3}\)
Ta thấy \(333^4\)tận cùng bằng 1 nên \(\left(333^4\right)^{q_1}\)tận cùng bằng 1 mà \(333^3\)tận cùng bằng 7 nên \(\left(333^4\right)^{q_1}.333^3\)tận cùng bằng 7 (1)
Ta thấy \(777^4\)tận cùng bằng nên \(\left(777^4\right)^{q_2}\)tận cùng bằng 1 mà \(777^3\)tận cùng bằng 3 nên \(\left(777^4\right)^{q_1}.777^3\)tận cùng bằng 3 (2)
Từ (1) và (2) suy ra \(\left(333^4\right)^{q_1}.333^3+\left(777^4\right)^{q_2}.777^3\)tận cùng bằng 0 hay \(333^{555^{777}}+777^{555^{333}}\)tận cùng bằng 0 suy ra \(333^{555^{777}}+777^{555^{333}}⋮10\)
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
thực sự là mk ko hĩu