Tìm số có hai chữ số sao cho khi cộng nó với số gồm hai chữ số ấy nhưng viết theo thứ tự ngược lại tư được số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
duong nhien la 11 va 65 roi ban oi neu ko tic minh la ban hoc giot
gọi số đó là ab
ab +ba = 11a + 11b chia het cho 11
=> ab +ba chia het cho11
nhớ tick cho mình nha
Gọi số cần tìm là ab (a;b thuộc N;a #0;a,b nhỏ hơn hoặc bằng 9)
Tổng là : n^2
=)ab-ba=n^2
=)a.9+b.9=n^2
=)9.(a+b)=n^2
=)n^2 chia hết cho 9
Mà a>b>0=)(a-b) lớn nhất là 9-1=8
n^2=8.9=72=)n nhỏ hơn hoặc bằng 8
Rồi bạn thử các trường hợp từ 0 cho đén 8
Rồi có 2 trường hợp chọn được rồi bạn phân tích thành phép cộng của a+b
Mà ab và ba là 2 số nguyên tố =)Bạn loại các trường hợp không phải số nguyên tố rồi kết luận số cần tìm.
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
Gọi số cần tìm là ab.
Theo đề bào ta có:
\(ab+ba=c^2\)
\(10a+b+10b+a=c^2\)
\(11a+11b=c^2\)
\(11.\left(a+b\right)=c^2\)
Mà 11 là số nguyên tố nên a+b=11.
Với a=2=>b=9
...........
Chúc em học tốt^^
Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab + ba = x2 (x thuộc N*)
=> (10a + b) + (10b + a) = x2
=> 10a + b + 10b + a = x2
=> 11a + 11b = x2
=> 11.(a + b) = x2
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để ab + ba là số chính phương thì a + b = 11.k2 (k thuộc N*)
Mà a,b là chữ số; a khác 0 => \(1\le a+b\le18\)=> a + b = 11
Giả sử a > b => a = 9; b = 2 hoặc a = 8; b = 3 hoặc a = 7; b = 4 hoặc a = 6; b = 5
Vậy số cần tìm là: 29; 38; 47; 56; 65; 74; 83; 92
Gọi số cần tìm là ab
Theo bài ra, ta có:
ab+ba=n2
=>10a+b+10b+a=n2
=>11(a+b)=n2
=>n2⋮11
=>n2⋮112
=>11(a+b)⋮112
=>(a+b)=11
=>a,b∈\(\left\{\left(9,2\right);\left(8,3\right);\left(7,4\right);\left(6,5\right);\left(5.6\right);\left(4.7\right);\left(3.8\right)\left(2,9\right)\right\}\)
=>ab∈\(\left\{92;83;74;65;56;47;38;29\right\}\)
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
Gọi số cần tìm là abcd
Ta có : abcd.9=dcba
=> a= 1
=> 1bcd.9=dcb1
=> (1000+100b+10c+d).9=1000d+100c+10b+1
=> 9000+900b+90c+9d=1000d+100c+10b+1
=> 8999+890b=991d+10c
Ta thấy d và c lớn nhất chỉ bằng 9
=> 991d+10c lớn nhất chỉ bằng 9009
=> 8999+890b lớn nhất bằng 9009
=> b=1
=> 8999+890=991d+10c
=>9889=991d+10c
Mà 991d+10c lớn nhất bằng 9009
=> không tồn tại số đó