Tại sao trong định nghĩa thì giống giá trị tuyệt đối Ià ngoặc nhọn |A| =A và -A . Nhưng khi giải bài có chứa trị tuyệt đối thì ngoặc vuông ngoặc hoặc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai nói với em là \(-a< 0\) vậy?
Ví dụ \(a=-3\Rightarrow-a=3\) có nhỏ hơn 0 đâu?
như thế này , số bên trong GTTĐ ( giá trị tuyệt đối ) nếu là số âm thì ra ngoài sẽ là số đối của nó . Số a ko biết là âm hay dương nên phá dấu GTTĐ ra mới chia làm hai trường hợp như thế . số đối của nó thì nếu nó âm VD : a âm thì số đối của nó là -a . Còn tại sao GTTĐ của a =-a thì bạn cứ coi như là GTTĐ của 1 số chỉ có thể lớn hơn hoặc bằng 0 giống như bình phương ấy
sorry anh nha
em ko lm đc
tại em mới lớp 6
thông cảm
chúc anh HT
Mình ví dụ cho bạn hiểu
\(a\ge0\Rightarrow\left|a\right|=a\)
Ví dụ : | 5 | = 5 ; | 0 | = 0 ; ...
a < 0 => | a | = -a
Ví dụ : | -6 | = -(-6) = 6 ; | -99 | = -(-99) = 99
Tóm lại GTTĐ của một số luôn lớn hơn hoặc bằng 0 ._.
(x+|3/4|)=(-1-|1/4|)
(x+3/4)=(-1-1/4)
x+3/4=-1-1/4
x+3/4=-4/4-1/4
x+3/4=-5/4
x=-5/4-3/4
x=-8/4
x=-2
Vậy x=-2
tk nha bn, mk nhanh nhất đó
( x + 3/4) = 5/4
trường hợp 1: (x + 3/4) = 5/4
x = 5/4 -3/4
x = 2/4 = 1/2
trường hợp 2 : (x + 3/4) = -5/4
x = -5/4 -3/4
x =-2
a) | 2x - 1 | = 1- 3x
\(\orbr{\begin{cases}2x-1=1-3x\\2x-1=-\left(1-3x\right)\end{cases}}\)
\(\orbr{\begin{cases}2x-3x=1+1\\2x-1=-1+3x\end{cases}}\)
\(\orbr{\begin{cases}-x=2\\2x+3x=-1+1\end{cases}}\)
\(\orbr{\begin{cases}x=-2\\5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)
b) | 1 - 2x | = x + 1
\(\orbr{\begin{cases}1-2x=x+1\\1-2x=-\left(x+1\right)\end{cases}}\)
\(\orbr{\begin{cases}-2x-x=1-1\\-2x+x=-1-1\end{cases}}\)
\(\orbr{\begin{cases}-3x=0\\-x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
tương tự
Cách hỏi của bạn thực sự hơi khó hiểu. Mình chỉ trả lời theo cách hiểu của mình về câu hỏi của bạn thôi nhé.
- Thứ nhất, không cần phải tìm điều kiện của số trong giá trị tuyệt đối. Thông thường khi đến đoạn $\sqrt{a^2}=|a|$ thì đề bài đã có sẵn điều kiện $a\geq 0$ hoặc $a< 0$ để bạn tiếp tục thực hiện đến đoạn phá trị tuyệt đối. Ví dụ, cho $a< 0$ thì $\sqrt{a^2}=|a|=-a$
- Thứ hai, trong trường hợp $\sqrt{5a}.\sqrt{45a}-3a$, điều kiện để biểu thức này có nghĩa là $5a\geq 0$ và $45a\geq 0$, hay $a\geq 0$.
Khi đó, để phá căn và xuất hiện trị tuyệt đối, bạn thực hiện $\sqrt{5a}.\sqrt{45a}-3a=\sqrt{225a^2}-3a=\sqrt{(15a)^2}-3a=|15a|-3a=15a-3a=12a$
Ở định nghĩa là |A|=A và -A ( dấu ngoặc nhọn)
Còn khi giải bài thì dùng ngoặc vuông
Chỉ mình tại sao ạ
Có lẽ là khi giải bài chúng ta cần chia ra hai trường hợp là hoặc là A không âm hoặc là A âm