cho a+b+c=2016 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{4}\)
Tính \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{3^{14}\cdot5^4-3^{12}\cdot5^4}{3^{12}\cdot5^6+7\cdot3^{12}\cdot5^6}=\dfrac{3^{12}\cdot5^4\left(3^2-1\right)}{3^{12}\cdot5^6\left(1+7\right)}=\dfrac{1}{25}\)
\(a+b+c=2016\Rightarrow\left\{{}\begin{matrix}a=2016-\left(b+c\right)\\b=2016-\left(c+a\right)\\c=2016-\left(a+b\right)\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{2016-\left(b+c\right)}{b+c}+\dfrac{2016-\left(c+a\right)}{c+a}+\dfrac{2016-\left(a+b\right)}{a+b}\)\(\Rightarrow S=2016\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(\Rightarrow S=2016.\dfrac{1}{90}-3\)
\(\Rightarrow S=\dfrac{97}{2}\)
Xét \(\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=126.16=2016\)
\(\Leftrightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=2016\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=2013\)
Vậy A = 2013
Lời giải:
Bạn tham khảo cách làm tương tự tại đây:
https://hoc24.vn/cau-hoi/cho-dfracab-2017ccdfracbc-2017aadfracca-2017bbvoi-a-b-c-ne0-tinhp-left1dfracabrightleft1dfracb.161494910584
Kết quả $P=8$ hoặc $P=-1$
E xin lỗi, e ko nhận câu trả lời này vì có chứa link tới các web khác
theo bài ra ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{`1}{4}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{1}{4}\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{a+b+c}{4}\)
\(\Rightarrow1+\dfrac{c}{a+b}+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\dfrac{2016}{4}\)
\(\Rightarrow\left(1+1+1\right)+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)
\(\Rightarrow3+\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=504\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=504-3\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)
vậy \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=501\)
(a+b+c)(1/a+b+1/b+c+1/c+a)=(a+b+c)/4
(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)=(a+b+c)/4
=> 1+c/(a+b)+1+a/(b+c)+1+b/(c+a)=2016/4
<=>c/(a+b)+a/(b+c)+b/(c+a)+3=504
=> A=a/(b+c)+b/(c+a)+c/(a+b)=504-3=501