Tìm x biết rằng:
2x-(21.3.105-105.61)=(-11).26
\(\dfrac{-3}{4}-x=\dfrac{7}{12}+\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\)
2) \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)
\(\Leftrightarrow4x=-\dfrac{20}{7}\)
\(\Leftrightarrow x=-\dfrac{5}{7}\)
a)\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{8}{12}\)
\(\dfrac{2}{5}+x=\dfrac{3}{12}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=\dfrac{5}{20}-\dfrac{8}{20}\)
\(x=\dfrac{-3}{20}\)
b)\(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow2x=0\) hoặc \(x-\dfrac{1}{7}=0\)
\(x=0:2\) \(x=0+\dfrac{1}{7}\)
\(x=0\) \(x=\dfrac{1}{7}\)
\(\Rightarrow x=0\) hoặc \(x=\dfrac{1}{7}\)
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{8}{20}-\dfrac{15}{20}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}.\dfrac{-20}{7}\)
x= \(\dfrac{1.\left(-5\right)}{1.7}\)
\(x=\dfrac{-5}{7}\)
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
`3/5 : x =1/3 +1/2`
` 3/5 : x= 2/6 +3/6`
` 3/5 : x= 5/6`
` x= 3/5 : 5/6`
` x= 3/5 xx 6/5`
` x= 18/25`
__
`x: 7/15 =2`
` x= 2xx 7/15`
` x= 14/15`
__
`x-3/2=11/4-5/4`
`x-3/2= 6/4`
`x= 3/2 +3/2`
`x= 6/2`
`x=3`
__
`x+5/4 = 3/2+7/12`
`x+5/4 = 18/12+7/12`
`x+5/4 = 25/12`
`x= 25/12-5/4`
`x= 25/12- 15/12`
`x= 10/12`
`x= 5/6`
d: =>-x-5/6=7/12-4/12=3/12=1/4
=>-x=1/4+5/6=13/12
hay x=-13/12
e: =>x+3=-5
hay x=-8
f: =>4,5-2x=-1/2
=>2x=5
hay x=5/2
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
c.\(\dfrac{3}{7}+\dfrac{5}{7}:x=\dfrac{1}{3}\)
\(\dfrac{5}{7}:x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{5}{7}:x=-\dfrac{2}{21}\)
\(x=\dfrac{5}{7}:-\dfrac{2}{21}\)
\(x=-\dfrac{15}{2}\)
d.\(3\dfrac{1}{4}:\left|2x-\dfrac{5}{12}\right|=\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=3\dfrac{1}{4}:\dfrac{39}{16}\)
\(\left|2x-\dfrac{5}{12}\right|=\dfrac{4}{3}\)
\(\rightarrow\left[{}\begin{matrix}2x-\dfrac{5}{12}=\dfrac{4}{3}\\2x-\dfrac{4}{12}=-\dfrac{4}{3}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{4}\\2x=-\dfrac{11}{12}\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=\dfrac{7}{8}\\x=-\dfrac{11}{24}\end{matrix}\right.\)
A, \(\dfrac{4}{9}+x=\dfrac{5}{3}\)
\(x\)\(=\dfrac{5}{3}-\dfrac{4}{9}\)
\(x\)\(=\dfrac{11}{9}\)
B,\(\dfrac{3}{4}.x=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}:\dfrac{3}{4}\)
\(x=\)\(\dfrac{-2}{3}\)
a) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\in Q\) ( thỏa mãn )
Vậy x = \(-\dfrac{3}{20}\)
b) \(2x.\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow3x-2x.\dfrac{1}{7}=0\) (1)
mà \(x\in Q\) \(\Rightarrow2x.\dfrac{1}{7}\in Q\)(2)
Từ (1) và (2) \(\Rightarrow2x.\dfrac{1}{7}=0\)
\(\Rightarrow2x=\dfrac{1}{7}:0=0\)
\(\Rightarrow x=0:2=0\in Q\) (thỏa mãn)
Vậy x=0
c) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{3}{4}-\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{7}{20}\)
\(\Leftrightarrow x=\dfrac{1}{4}:\dfrac{7}{20}\)
\(\Leftrightarrow x=\dfrac{5}{7}\in Q\)(thỏa mãn )
Vậy x= \(\dfrac{5}{7}\)
+) 2x - (21.3.105-105.61)=(-11).26
2x- 210= -286
2x = -286 + 210
2x = -76
x = -76 : 2
x = -38
Vậy x = -38
+) -3/4 - x = 7/12 +1/2
-3/4 - x = 13/12
x = -3/4 - 13/12
x = -3/4 + ( -13/12)
x = 22/12
x = 11/6
Vậy x = 11/6
Có hơi khó nhìn một chút.
Bạn thông cảm nhé !