K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

\(P\left(x\right)=\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(P\left(x\right)=\dfrac{\left(3y-3xy\right)-\left(2-2x\right)}{\left(1-x^3\right)-\left(3x-3x^2\right)}\)

\(P\left(x\right)=\dfrac{3y\left(1-x\right)-2\left(1-x\right)}{\left(1-x\right)\left(1+x+x^2\right)-3x\left(1-x\right)}\)

\(P\left(x\right)=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)\left(1+x+x^2-3x\right)}\)

\(P\left(x\right)=\dfrac{3y-2}{1-2x+x^2}\)

\(P\left(x\right)=\dfrac{3y-2}{\left(1-x\right)^2}\)

7 tháng 3 2017

\(\dfrac{3y-2}{\left(1-x\right)_{ }^2}\)

10 tháng 4 2018

a) Phân thức Giải bài 55 trang 59 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định

⇔ x2 – 1 ≠ 0

⇔ (x – 1)(x + 1) ≠ 0

⇔ x – 1 ≠ 0 và x + 1 ≠ 0

⇔ x ≠ ±1

Vậy phân thức xác định với mọi x ≠ ±1

b) Với x ≠ ±1, ta có:

Giải bài 55 trang 59 Toán 8 Tập 1 | Giải bài tập Toán 8

c) + Với x = 2, bạn Thắng tính giá trị biểu thức đúng.

+ Với x = -1, phân thức Giải bài 55 trang 59 Toán 8 Tập 1 | Giải bài tập Toán 8 không xác định nên không thể tính giá trị biểu thức nên bạn Thắng tính sai.

+ Để tính giá trị của phân thức bằng cách tính giá trị của phân thức rút gọn, ta phải đảm bảo giá trị của biến thỏa mãn điều kiện xác định.

29 tháng 11 2021

1. = \(\dfrac{x+y}{x-y}\)
2. = \(\dfrac{x}{x+3}\)

a. \(x\ne5\) là ĐKXĐ của biểu thức P

b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)

c. P = -1 <=> x-5 =-1 <=> x=4

a) ĐKXĐ: \(x\ne-2\)

b) Ta có: \(\dfrac{2x^2-4x+8}{x^3+8}\)

\(=\dfrac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2}{x+2}\)

c) Vì x=2 thỏa mãn ĐKXĐ

nên Thay x=2 vào biểu thức \(\dfrac{2}{x+2}\), ta được:

\(\dfrac{2}{2+2}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi x=2 thì giá trị của biểu thức là \(\dfrac{1}{2}\)

d) Để \(\dfrac{2}{x+2}=2\) thì x+2=1

hay x=-1(nhận)

Vậy: Để \(\dfrac{2}{x+2}=2\) thì x=-1

25 tháng 12 2018

a) Phân thức Giải bài 48 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định

⇔ x + 2 ≠ 0

⇔ x ≠ -2

Vậy điều kiện xác định của phân thức là x ≠ -2.

Giải bài 48 trang 58 Toán 8 Tập 1 | Giải bài tập Toán 8

c) A = 1 ⇔ x + 2 = 1 ⇔ x = -1 ≠ -2 (Thỏa mãn điều kiện)

Vậy với x = -1 thì A = 1.

d) A = 0 ⇔ x + 2 = 0 ⇔ x = -2 (Không thỏa mãn điều kiện)

Vậy không có giá trị nào của x để A = 0.

a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)

\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)

b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)

c: x^2+1>=0

=>3/x^2+1>=0

=>-3/x^2+1<=0

=>A<=0(ĐPCM)

6 tháng 5 2017

a) x -5.

b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5  

c) Ta có P = 1 Û x = -4 (TMĐK)

d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .

30 tháng 10 2023

a) ĐKXĐ: 

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)

\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)

\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)

\(A=\dfrac{x-1}{x+1}\)

c) Thay x = 3 vào A ta có:

\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)

\(\Leftrightarrow3x\ne\pm y\) 

b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)

\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)

\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)

\(B=\dfrac{2}{3x+y}\)

Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:

\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)

20 tháng 12 2022

Câu 4: Không có nghĩa khi x-3=0

=>x=3

Câu 5:

\(A=\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)

11 tháng 12 2020

Bài 1 : 

\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)

\(=x^2-4x+4-x+9=x^2-5x+13\)

Bài 2 : 

a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)

\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)

b, Thay x = -4 ta được : 

\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)