K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Áp dụng HĐT bình phương của 1 tổng ta có:\(x^2+2xy+y^2=x^2+y^2+2xy=1+2xy\)Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\) (HĐT bình phương của 1 hiệu)

\(\Rightarrow2xy\le x^2+y^2\) hay \(2xy\le1\)

\(\Rightarrow\left(x+y\right)^2=1+2xy\le1+1=2\)

\(\Rightarrow MAX_{\left(x+y\right)^2}=2\)

7 tháng 3 2017

Áp dụng BĐT BCS, ta có:

\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)

\(2\ge\left(x+y\right)^2\)

\(\left(x+y\right)^2\le2\)

Vậy: \(Max_{\left(x+y\right)^2}=2\) khi \(x^2+y^2=1\)

24 tháng 1 2022

Câu 9: B

Câu 10: A

Câu 11: C

Câu 12: C

Câu 13: B

Chọn A

5: ĐKXĐ: \(\left\{{}\begin{matrix}x^2+3x-4>=0\\2x^2-2x>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+4\right)\left(x-1\right)>=0\\2x\left(x-1\right)>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\\\left[{}\begin{matrix}x>=1\\x< =0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>=1\\x< =-4\end{matrix}\right.\)

\(\sqrt{x^2+3x-4}< \sqrt{2x^2-2x}\)

=>\(x^2+3x-4< 2x^2-2x\)

=>\(2x^2-2x-x^2-3x+4>0\)

=>\(x^2-5x+4>0\)

=>(x-1)(x-4)>0

=>\(\left[{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được:

\(\left[{}\begin{matrix}x>4\\x< =-4\end{matrix}\right.\)

7: ĐKXĐ: x>=-1

\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)

=>\(2\cdot\sqrt{x+1+2\sqrt{x+1}+1}-\sqrt{x+1}=4\)

=>\(2\cdot\sqrt{\left(\sqrt{x+1}+1\right)^2}-\sqrt{x+1}=4\)

=>\(2\left(\sqrt{x+1}+1\right)-\sqrt{x+1}=4\)

=>\(\sqrt{x+1}+2=4\)

=>\(\sqrt{x+1}=2\)

=>x+1=4

=>x=3(nhận)

Chọn D

27 tháng 9 2021

Giải ra giúp e vs ạ😭😭

3: \(\Leftrightarrow\dfrac{x-1}{2x-3}< 0\)

hay 1<x<3/2

26 tháng 2 2023

câu 2 thì mk có pt nhưng mk ko bt giải

\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{10}\\x-y=15\end{matrix}\right.\)

26 tháng 2 2023

Giải câu 2 à bạn, câu 1 tự làm đc rồi :>>