K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

1:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc OIS=góc OAS=90 độ

=>OIAS nội tiếp

2:

Xet ΔSAO vuông tại A có AH là đường cao

nên SH*SO=SA^2

3:

ΔOAD cân tại O

mà OS là đường cao

nên OS là phân giác của góc AOD

Xét ΔAOS và ΔDOS co

OA=OD

góc AOS=góc DOS

OS chung

=>ΔAOS=ΔDOS

=>góc SDO=90 độ

=>SD là tiếp tuyến của (O)

4: Xet ΔSAK và ΔSIA có

góc SAK=góc SIA

gó ASK chung

=>ΔSAK đồng dạng với ΔSIA

=>SA/SI=SK/SA

=>SA^2=SK*SI

31 tháng 1 2024

em có chắc chắn đề bài đúng không nhỉ

16 tháng 5 2023

a) Do SA là tiếp tuyến tại A của (O) nên \(\widehat{OAS}=90^o\). Tương tự, ta có \(\widehat{OBS}=90^o\), suy ra \(\widehat{OAS}+\widehat{OBS}=180^o\). Do đó tứ giác SAOB nội tiếp. (đpcm)

 Mặt khác, trong đường tròn (O) có M là trung điểm của dây EF nên \(OM\perp EF\) tại M hay \(\widehat{OMS}=90^o\). Từ đó suy ra \(\widehat{OMS}=\widehat{OAS}\),từ đó tứ giác OMAS nội tiếp. Vì vậy 5 điểm O, M, A, S, B cùng thuộc một đường tròn \(\Rightarrow\) Tứ giác SAMO nội tiếp (đpcm)

b) Ta thấy tứ giác OMAB nội tiếp nên \(\widehat{PMA}=\widehat{PBO}\). Từ đó dễ dàng suy ra \(\Delta PAM~\Delta POB\left(g.g\right)\Rightarrow\dfrac{PA}{PO}=\dfrac{PM}{PB}\) \(\Rightarrow PA.PB=PO.PM\) (đpcm)

c) Do tứ giác SAMB nội tiếp nên \(\widehat{SMB}=\widehat{SAB}\) và \(\widehat{SMA}=\widehat{SBA}\). Mặt khác, trong đường tròn (O), có 2 tiếp tuyến tại A và B cắt nhau tại S nên \(SA=SB\) hay \(\Delta SAB\) cân tại S \(\Rightarrow\widehat{SAB}=\widehat{SBA}\) \(\Rightarrow\widehat{SMB}=\widehat{SMA}\) hay MI là phân giác trong của \(\widehat{AMB}\) . Lại có \(MP\perp MI\) nên MP là phân giác ngoài của \(\widehat{AMB}\). Áp dụng tính chất đường phân giác, ta thu được \(\dfrac{IA}{IB}=\dfrac{MA}{MB}\) và \(\dfrac{PA}{PB}=\dfrac{MA}{MB}\). Từ đây suy ra \(\dfrac{IA}{IB}=\dfrac{PA}{PB}\) \(\Rightarrow PA.IB=PB.IA\) (đpcm)

Xét tứ giác SAOB có \(\widehat{OAS}+\widehat{OBS}=180^0\)

nên SAOB là tứ giác nội tiếp