Số hạng tử trong dạng thu gon của đa thức 2x4 - 4y5 - 3x2y3z2 + 2yz3 + x2y3z2 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
a: \(A\left(x\right)=0.5x^5-2x^4+3x^3+2x-3\)
\(B\left(x\right)=-0.5x^5+6x^4+3x^3+3x^2-x-1\)
b: Bậc 5
Hệ số cao nhất 0,5
Hệ số tự do là -3
c: \(A\left(x\right)+B\left(x\right)=4x^4+6x^3+3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=x^5-8x^4-3x^2+3x-2\)
=>B(x)-A(x)=-x^5+8x^4+3x^2-3x+2
`5,`
`a,`
`P(x)=x^5-2x^4+4x^3-x^5-3x^3+2x-5`
`= (x^5-x^5)-2x^4+(4x^3-3x^3)+2x-5`
`= -2x^4+x^3+2x-5`
Bậc của đa thức: `4`
`b,`
Hệ số cao nhất của đa thức: `-2`
`c,`
Hệ số tự do của đa thức: `-5.`
Bạn chú ý môn học.
Bậc của hạng tử -3x4 là 4 ( số mũ của x4)
Bậc của hạng tử -2x là 1 ( số mũ của x)
Bậc của 1 là 0
`a,`
`P(x)=5x^3+3-3x^2+x^4-2x-2+2x^2+x`
`P(x)=x^4+5x^3+(-3x^2+2x^2)+(-2x+x)+(3-2)`
`P(x)=x^4+5x^3-x^2-x+1`
`Q(x)=2x^4+x^2+2x+2-3x^2-5x+2x^3-x^4`
`Q(x)=(2x^4-x^4)+2x^3+(x^2-3x^2)+(2x-5x)+2`
`Q(x)=x^4+2x^3-2x^2-3x+2`
`b,`
`P(x)-Q(x)=(x^4+5x^3-x^2-x+1)-(x^4+2x^3-2x^2-3x+2)`
`P(x)-Q(x)= x^4+5x^3-x^2-x+1-x^4-2x^3+2x^2+3x-2`
`P(x)-Q(x)=(x^4-x^4)+(5x^3-2x^3)+(-x^2+2x^2)+(-x+3x)+(1-2)`
`P(x)-Q(x)=3x^3+x^2+2x-1`
Mọi đa thức bậc ba đều có dạng ax3+bx2+cx+d tức là chỉ có 4 hạng tử nên nếu có 5 hạng tử thì phải có 2 hạng tử cùng bậc.
Thật vậy, nếu không có 2 hạng tử nào cùng bậc thì chứng tỏ đa thức đó có 5 hạng tử nên ít nhất là đa thức bậc 4,trái với đề bài.
vậy ....
2x4-4y5-3x2y3z2 + 2yz3 + x2y3z2
=> 2x4 - 4y5 + ( -3x2y3z2+ x2y3z2) + 2yz3
=> 2x4 - 4y5 + ( -2x2y3z2) + 2yz3
Vậy đa thứ trên có 4 hạng tử
sorry nha! dấu " =>" bạn chuyển thành dấu " = " nhé!