Tìm x thuộc Z
X + 5 chia hết cho x - 2
2x + 1 chia hết cho x + 5
các bạn giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
a, (x+3)(y+2) = 1
=> (x+3) \(\in\)Ư(1) = \(\left\{-1;1\right\}\)
Do (x+3)(y+2) là số dương
=> (x+3) và (y+2) cùng dấu
\(\Rightarrow\hept{\begin{cases}x+3=1\\y+2=1\end{cases}}\)hay \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}}\)
TH1:
\(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
TH2:
\(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
Vậy ............
b, (2x - 5)(y-6) = 17
=> \(\left(2x-5\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau:
2x - 5 | -17 | -1 | 1 | 17 |
x | -6 | 2 | 3 | 11 |
y - 6 | -1 | -17 | 17 | 1 |
y | 5 | -11 | 23 | 7 |
Vậy \(\left(x,y\right)\in\left\{\left(-6,5\right);\left(2,-11\right);\left(3,23\right);\left(11,7\right)\right\}\)
c, Tương tự câu b
2 Tìm n
a, n+6 chia hết cho n+1/ =n+1+5 chia hết cho n+1/ =(n+1).5 chia hết cho n+1/ suy ra n+1 thuộc ước (5)
Để n+1 chia hết cho n+1
suy ra 5 chia hết cho n+1/ Suy ra n thuộc Ư(5)=(-1; -5; 1; 5)
Ta lập bảng
n+1 -1 -5 1 5
n -2 -6 0 4
suy ra: n thuộc (-2; -6; 0; 4)
thử lại đi xem coi đúng ko nhé
\(x+7⋮x+2\)
\(\Rightarrow x+2+5⋮x-2\)
mà \(x+2⋮x+2\)
\(\Rightarrow5⋮x+2\Rightarrow x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x + 2 = 1 => x = -1
.... tương tự
a)Ta có : \(x-5⋮x+2=>x-5-\left(x+2\right)⋮x-2=>-7⋮x-2\)
\(=>x-2\inƯ\left(7\right)\left\{-7;-1;1;7\right\}\)
\(=>x\in\left\{-5;1;3;9\right\}\)
b)Ta có : \(2x+1⋮2x-1=>2x+1-\left(2x-1\right)⋮2x-1=>2⋮2x-1\)
\(=>2x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>2x\in\left\{-1;0;2;3\right\}\)
\(=>x\in\left\{0;1\right\}\)(vì \(x\in Z\))
c)\(\left(x+5\right)-3\left(x+5\right)+2⋮x+5=>2⋮x+5=>x+5\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(=>x\in\left\{-7;-6;-4;-3\right\}\)
d)\(x+1⋮x+2=>x+2-1⋮x+2\)
\(=>1⋮x+2=>x+2\inƯ\left(1\right)=\left\{1;-1\right\}=>x\in\left\{-1;-3\right\}\)
a, x + 5 \(⋮\) x - 2
\(\Leftrightarrow\) ( x - 2 ) + 7 \(⋮\) x - 2
\(\Leftrightarrow\) 7 \(⋮\) x - 2 ( vì x - 2 \(⋮\) x - 2 )
\(\Leftrightarrow\) x - 2 \(\in\) Ư(7) = \(\left\{1,-1,7,-7\right\}\)
Ta có bảng :
Vậy x \(\in\) \(\left\{1,3,9,-5\right\}\)
b, 2x + 1\(⋮\) x +5
\(\Leftrightarrow\) 2( x + 5 ) + 9 \(⋮\) x + 5
\(\Leftrightarrow\) 9 \(⋮\) x + 5 [ vì 2(x+5) \(⋮\) x + 5 ]
\(\Leftrightarrow\) x + 5 \(\in\) Ư (9) = { 1; -1; 3; 9; -9}
Ta có bảng :
Vậy x \(\in\) { -4;-6;-8;-2;4;-14}
x+5 chia hết cho x-2 => x-2+7 chia hết cho x-2=>7 chia hết cho x-2=> x-2 thuộc vào ước của 7=( -1,1,7,-7). TH1: x-2=1 => x =3. Các TH còn lại tự làm