giải phương trình:
2x2+3x+\(\sqrt{2x^2+3x+9}\)=33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(2x^2-2x+\left(x+1-\sqrt{3x+1}\right)+2\left(x+2-\sqrt[3]{19x+8}\right)=0\)
\(\Leftrightarrow2x^2-2x+\dfrac{x^2-x}{x+1+\sqrt[]{3x+1}}+\dfrac{\left(x+7\right)\left(x^2-x\right)}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(2+\dfrac{1}{x+1+\sqrt[]{3x+1}}+\dfrac{x+7}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{19x+8}+\sqrt[3]{\left(19x+8\right)^2}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
ĐKXĐ: \(2\le x\le5\)
\(\left(\sqrt{2x-4}-\sqrt{5-x}\right)\sqrt{3x-3}=3x-9\)
\(\Leftrightarrow\dfrac{\left(3x-9\right)\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=3x-9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9=0\Rightarrow x=3\\\dfrac{\sqrt{3x-3}}{\sqrt{2x-4}+\sqrt{5-x}}=1\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow\sqrt{3x-3}=\sqrt{2x-4}+\sqrt{5-x}\)
\(\Leftrightarrow3x-3=x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow x-2=\sqrt{\left(2x-4\right)\left(5-x\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)^2=\left(2x-4\right)\left(5-x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left(x-2\right)\left(3x-12\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy pt có 3 nghiệm \(x=\left\{2;3;4\right\}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
Đk: `x >= 0`.
`<=> sqrtx + sqrt(x+3) + 2sqrt(x(x+3)) - (3x+9) + 5x = 0`
Đặt `sqrt x = a, sqrt(x+3) = b`
`<=> a + b + 2ab - 3b^2 + 5a^2 = 0`
`<=> (a+b)(5a+1-3b) = 0`
`<=> a = -b` hoặc `5a + 1 = 3b`.
Đến đây bạn biến đổi ẩn rồi tự giải tiếp ha.
Ta có: \(2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\Leftrightarrow\left(2x^2+3x-27\right)+\left(\sqrt{2x^2+3x+9}-6\right)=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{2x^2+3x-27}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{\left(2x+9\right)\left(x-3\right)}{\sqrt{2x^2+3x+9}+6}=0\)
\(\Leftrightarrow\left(2x+9\right)\left(x-3\right)\left(1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+9=0\\x-3=0\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=3\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\left(1\right)\end{matrix}\right.\)
Giải (1) ta có:
\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{2x^2+3x+9}+6}=-1\)
\(\Leftrightarrow1=-\sqrt{2x^2+3x+9}-6\)
\(\Leftrightarrow7=-\sqrt{2x^2+3x+9}\)
\(\Leftrightarrow49=2x^2+3x+9\)
\(\Leftrightarrow2x^2+3x-40=0\)
Ta có:Δ=32-4.2.(-40)=329
Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{329}}{4}\\x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-\sqrt{329}}{4}\end{matrix}\right.\)
Vậy phương trình có 4 nghiệm là ....