Cho hai số nguyên dương a và b thỏa mãn ab = 2010. Nếu a > b thì giá trị nhỏ nhất của a-b là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2010 = 2.3.5.67
=> (a,b) = (1,2010;2,1005;3,670;5,402;6,335;10,201;15,134;30,67)
Nhỏ nhất khi a - b = 67 - 30 = 37
ta có :
\(P=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)
Vậy m=3
dấu bằng xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
vậy \(\hept{\begin{cases}a_1=2\\b_1=1\end{cases}\Rightarrow a_1+b_1+m=2+1+3=6}\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{4}{9}a^2+b^2\geq \frac{4}{3}ab\geq \frac{4}{3}.6=8$
$\frac{5}{9}a^2\geq \frac{5}{9}.3^2=5$
Cộng theo vế:
$S\geq 8+5=13$
Vậy $S_{\min}=13$ khi $(a,b)=(3,2)$
vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a ∀mọi x (1)
vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x (2)
từ 1 và 2 ⇒ a2+b2 ≥ 2a+2b
⇒ A≥ 2(a+b)=2
dấu''=' xảy ra khi a=b=1/2
\(\left\{\begin{matrix}a>b\\a-b>0\\ab=2010\\MinA=a-b\end{matrix}\right.\) 2010=201.10=3.67.10 \(\Rightarrow\left\{\begin{matrix}a=67\\b=30\end{matrix}\right.\)Min A=67-30=37