Giả sử 2^2013 có m chữ số và 5^2013 có n chữ số ( trong hệ thập phân). Khi đó m+n là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: -799999
câu 2: cần 13245 chữ số
câu 3: 2014 chữ số
câu 4: -617
câu 6: 2014
câu 7: 16
câu 10: 9
Còn mấy câu nữa mình không biết. bạn tích đúng cho mình nha
Vì tổng có 2 chữ số ở phần thập phân nên số thập phân cũng có 2 chữ số ở phần thập phân.
Ta có : STP + STN = 998,25 ( 1 )
STP x 100 + STN = 2013 ( 2 )
Lấy ( 2 ) - ( 1 ) ta có :
STP x 100 - STP = 2013 - 998,25
STP x 99 = 1014,75
==> STP = 10,25
==> STN là : 998,25 - 10,25 = 988
Đ/S :...........
Có \(10^{m-1}< 2^{2019}< 10^m\) vì \(2^{2019}\)có m chữ số
Và \(10^{n-1}< 5^{2019}< 10^n\) vì \(5^{2019}\)có n chữ số
\(\Rightarrow10^{m-1}.10^{n-1}< 2^{2019}.5^{2019}< 10^m.10^n\)
\(\Leftrightarrow10^{m+n-2}< 10^{2019}< 10^{m+n}\)
\(\Rightarrow m+n-2< 2019< m+n\)
Có m; n thuộc N*
\(\Rightarrow m+n-1=2019\)
\(\Rightarrow m+n=2020\)
chi tiết,
\(10^{m-1}< 2^{2013}< 10^m\left(1\right)\)
\(10^{n-1}< 5^{2013}< 10^n\left(2\right)\)
Lấy (1) nhân vế với (2) ta được
\(10^{\left(m-1\right)+\left(n-1\right)}< 10^{2013}< 10^{m+n}\)
\(\Rightarrow\left(m+n\right)-2< 2013< \left(m+n\right)\)
\(\Leftrightarrow\left\{\begin{matrix}2013< \left(m+n\right)< 2015\\n,m\in N\end{matrix}\right.\)\(\Rightarrow\left(m+n\right)=2014\)
(m+n)=2012