cho tam giac ABC nhon tren tia Ax vuong goc (ABC) lay S khac A.ke duong cao BH cua tam giac ABC,H thuoc AC .goi (p) la mat phang qua C va vuong goc SB.(p) cat tia doi cua AS tai M,MH cat SC tai N.
a,chung minh MC vuong goc (SHB) b,biet BC=a;goc ABC=anpha,goc ACB=beta.tim GTNN dien tich tam giac SMC theo a,anpha,betaHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
a: góc ACB=90 độ-60 độ=30 độ<góc ABC
nên AB<AC
b: Xét ΔABC vuông tại A và ΔDBE vuông tại D có
BA=BD
góc ABC chung
Do đó: ΔABC=ΔDBE
c: XétΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
Do đó: ΔBAH=ΔBDH
Suy ra: góc ABH=góc DBH
hay BH là phân giác của góc ABC
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)