cho tam giác ABC đều. Lấy M trên BC. Gọi I,K là 2 điểm sao cho AB,AC là trung trực MI và MK
. Dựng hình bình hành MIQK
CMR: AQ//BC
giup minh di. vẽ ho minh nhe. minh k biet co dung k. giup minh nhe. minh dang cn gap lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MI//AC
Do đó: I là trung điểm của AB
Xét ΔBAC có
M,I lần lượt là trung điểm của BC,BA
=>MI là đường trung bình của ΔBAC
=>MI//AC và MI=AC/2
MI//AC
I\(\in\)MN
Do đó: MN//AC
Ta có: \(MI=\dfrac{AC}{2}\)
\(MI=\dfrac{MN}{2}\)
Do đó: MN=AC
Xét tứ giác ACMN có
MN//AC
MN=AC
Do đó: ACMN là hình bình hành
c: Xét ΔBAC có
M là trung điểm của CB
MK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
I,K lần lượt là trung điểm của AB,AC
=>IK là đường trung bình của ΔABC
=>IK//BC
=>IK//MQ
Ta có: ΔQAC vuông tại Q
mà QK là đường trung tuyến
nên \(QK=\dfrac{AC}{2}\)
mà MI=AC/2
nên QK=MI
Xét tứ giác MQIK có MQ//KI
nên MQIK là hình thang
Hình thang MQIK có MI=QK
nên MQIK là hình thang cân
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Ta có; ΔABC cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BC
Hình bình hành AMCK có \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: ta có: AMCK là hình chữ nhật
=>AK//CM và AK=CM
Ta có: AK//CM
M\(\in\)BC
Do đó: AK//MB
Ta có: AK=CM
MB=MC
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c: ta có: ABMK là hình bình hành
=>MK//AB
=>MI//AB
Xét tứ giác AIMB có MI//AB
nên AIMB là hình thang
d: Ta có: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà Q là trung điểm của AM
nên Q là trung điểm của BK
=>B,Q,K thẳng hàng