cho tam giác abc vuông tại a, đương cao ad. Gọi e là hình chiếu của d trên ab, f là hình chiếu của d trên ac. Biết db=2cm, dc=3cm. Tổng diện tích của tam giác deb và dfc là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất đường phân giác ta có:\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{2}{3}\Rightarrow AB=\frac{2}{3}AC\)
Áp dụng định lí Pitago vào tam giác vuông ABC ta tính được;\(AC^2+AB^2=BC^2\Leftrightarrow\frac{4}{9}AC^2+AC^2=5^2\)
\(\Rightarrow AC=\frac{15\sqrt{13}}{13}cm;AB=\frac{10\sqrt{13}}{13}cm\)
Ta lại có \(\Delta FDC\)đồng dạng \(\Delta EBD\left(góc-góc\right)\)
\(\Rightarrow\frac{FD}{EB}=\frac{FC}{ED}=\frac{DC}{BD}=\frac{3}{2}\)
\(\Rightarrow EB=\frac{2}{3}FD;FC=\frac{3}{2}ED\)
Vì AD là tia phân giác của góc vuông=> Các Tam giác AED và AFD là tam giác vuông cân => Tứ giác AEDF là hình vuông.
Gọi cạnh hình vuông AEDF là x hay AE=AF=FD=ED=x
\(VìAE=AF\Rightarrow AB-EB=AC-FC\)
\(AB-\frac{2}{3}FD=AC-\frac{3}{2}ED\)
\(\frac{10\sqrt{13}}{13}-\frac{2}{3}x=\frac{15\sqrt{13}}{13}-\frac{3}{2}x\)
\(\frac{5x}{6}=\frac{5\sqrt{13}}{13}\Rightarrow x=\frac{6\sqrt{13}}{13}cm\)
diện tích hình tam giác ABC \(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{75}{13}cm^2\)
diện tích hình vuông AEDF:\(S_{AEDF}=x^2=\frac{36}{13}cm^2\)
Tổng diện tích tam giác DEB và DFC\(S=\frac{75}{13}-\frac{36}{13}=3cm^2\)
Hình mình vẽ chưa chính xác lắm, bạn vẽ lại nhe. chúc bạn học tốt
Cảm ơn bạn Trường An nhiều nhé. Chúc bạn luôn may mắn, thành công.
1: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phan giác
=>AMDN là hình vuông
2: BC=căn 3^2+4^2=5cm
AD là phân giác
=>DB/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
BC = BD + DC = 2 + 3 = 5 (cm)
DEA = EAF = AFD = 900
=> AEDF là hcn có AD là tia phân giác
=> AEDF là hình vuông
=> \(\left\{\begin{matrix}\text{AF//ED}\\\text{AE//FD}\\DF=ED\end{matrix}\right.\)
Tam giác ABC có AD là tia phân giác
=> \(\frac{AB}{AC}=\frac{DB}{DC}=\frac{2}{3}\) (định lý)
=> \(\left\{\begin{matrix}AB=\frac{2}{3}AC\\AC=\frac{3}{2}AB\end{matrix}\right.\)
Tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 (định lý Pytago)
\(AB^2+\left(\frac{3}{2}AB\right)^2=5^2\)
\(AB=\frac{10\sqrt{13}}{13}\) (cm)
Theo định lý Talet, ta có:
\(\frac{DF}{AB}=\frac{CD}{BC}=\frac{3}{5}\Rightarrow DF=\frac{3}{5}AB=\frac{3}{5}\times\frac{10\sqrt{13}}{13}=\frac{6\sqrt{13}}{13}\left(cm\right)\)
\(\frac{FC}{AC}=\frac{DF}{AB}=\frac{DF}{\frac{2}{3}AC}=\frac{\frac{3}{2}DF}{AC}\Rightarrow FC=\frac{3}{2}DF\)
\(\frac{BE}{AB}=\frac{ED}{AC}=\frac{ED}{\frac{3}{2}AB}=\frac{\frac{2}{3}ED}{AB}\Rightarrow BE=\frac{2}{3}ED\)
\(S_{DEB}=ED\times EB\times\frac{1}{2}=ED\times\frac{2}{3}ED\times\frac{1}{2}=\frac{1}{3}DE^2=\frac{1}{3}DF^2\left(cm^2\right)\)
\(S_{DFC}=DF\times FC\times\frac{1}{2}=DF\times\frac{3}{2}DF\times\frac{1}{2}=\frac{3}{4}DF^2\left(cm^2\right)\)
\(S_{DEB}+S_{DFC}=\frac{3}{4}DF^2+\frac{1}{3}DF^2=\frac{3}{4}\left(\frac{6\sqrt{13}}{13}\right)^2+\frac{1}{3}\left(\frac{6\sqrt{13}}{13}\right)^2=3\left(cm^2\right)\)