Cho các số không âm sao cho và tổng có giá trị lớn nhất.Khi đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2a + 2b +3c=17 suy ra 2(a+b+c)+c=17 .Ta thấy để tổng a+b+c lớn nhất thì c phải nhỏ nhất nên c=0
a+b+c=8,5
Đáp số:a=8
b=0,5
c=0
a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế (1);(2)
=>a+3c+a+2b=8+9
=>(a+a)+(3c+2b)=17
=>2a+2b+3c=17
=>2a+2b+2c+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất<=>c nhỏ nhất
Mà c \(\ge\) 0(do c ko âm)
=>c=0
Thay c=0 vào (1) ta đc:
a+3.0=8=>a+0=8=>a=8
Vậy a=8 thỏa mãn
a+3c=8 nên c=(8-a)/3
a+2b=9 nên b=(9-a)/2
=>a+3c+a+2b=8+9
2a+2b+2c+c=17
2(a+b+c)=17+c
2[a+(9-a)/2+(8-a)/3]=17+(8-a)/3
2[6a/6+(27-3a)/6+(16-2a)/6]=17+(8-a)/3
2[(6a+27-3a+16-2a)/6]=17+(8-a)/3
2*(a+43)/6=17+(8-a)/3
(a+43)/3-(8-a)/3=17
(a+43-8+a)/3=17
2a+35=17*3=51
2a=51-35
2a=16
a=16/2
a=8
t k chắc, tính nhẩm k cầm mt
Ta có:
a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế các BĐT (1);(2)
=>a+3c+a+2b=8+9
=>(a+a)+3c+2b=17
=>2a+2c+c+2b=17
=>2a+2c+2b+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất <=>c nhỏ nhất
Mà c >= 0 (do c không âm)
=>c=0
Thay c=0 vào (1) ta có:a+3.0=8=>a+0=8=>a=8
Vậy a=8 thỏa mãn
(*)Linh ak,c từng nói t là super làm dài,bài này thì c cũng đâu khác t đâu?
Ta có:a+3c=8
nếu c=1 > a=5
nếu c=2 > a=2
Ta có tiếp:
a+2b=9
nếu b=1 > a=7
nếu b=2 > a=5
nếu b=3 > a=3
nếu b=4 > a=1
từ a+3c=8 và a+2b=9 ==> a=5 ; c=1 ;b=2 và GTLN là 5+1+2=8.
Từ a + 3c = 8, a + 2b = 9
\(\Rightarrow\)2a + 2b + 3c = 17.
Do đó 2 . ( a + b + c ) + c = 17
Để a + b + c lớn nhất, phải có c nhỏ nhất, mà c \(\ge\)0 nên c = 0
Khi đó a = 8, b = \(\frac{1}{2}\), GTLN của a + b + c = 8,5
Ta có:a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế (1);(2)
=>a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2a+2b+2c+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất<=>c nhỏ nhất ,mà c\(\ge\) 0(do c ko âm)
=>c=0
Thay c=0 vào ta có:
+)a+3c=8=>a=8
+)a+2b=9=>8+2b=9=>2b=1=>b=1/2
Vậy GTLN của a+b+c=9+1/2+0=8,5
Ta có:a+3c=8 (1)
a+2b=9 (2)
Cộng từng vế (1);(2)
=>a+3c+a+2b=8+9
=>2a+2b+3c=17
=>2a+2b+2c+c=17
=>2(a+b+c)+c=17
a+b+c lớn nhất<=>c nhỏ nhất ,mà c≥ 0(do c ko âm)
=>c=0
Thay c=0 vào ta có:
+)a+3c=8=>a=8
+)a+2b=9=>8+2b=9=>2b=1=>b=1/2
Vậy GTLN của a+b+c=9+1/2+0=8,5
Ta có:
a+2c+a+3b=8+9
=> 2a+3b+2c=17
=> 2(a+b+c)+c=17
Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất
=> c nhỏ nhất không âm.
=> a=8
b=1/2
c= 0
Vậy a=8
Ta có:
a+2b+a+3c=8+9
=> 2a+3c+2b=17
=> 2(a+b+c)+c=17
Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất
=> c nhỏ nhất không âm.
=> a=8
b=1/2
c= 0
Vậy a=8
bài này trên violympic nhung mình không biết cách giải chi tiết mà chỉ biết a=8
Giải:
Ta có: \(a+3c=8\)
\(a+2b=9\)
\(\Rightarrow a+a+2b+3c=17\)
\(\Rightarrow2a+2b+2c+c=17\)
\(\Rightarrow2\left(a+b+c\right)=17-c\)
Vì a + b + c đạt giá trị lớn nhất nên \(2\left(a+b+c\right)\) cũng phải đạt giá trị lớn nhất.
\(\Rightarrow MAX_{2\left(a+b+c\right)}=17\)khi c = 0
\(\Rightarrow MAX_{a+b+c}=8,5\)
hay \(MAX_{a+b}=8,5\)
\(\Rightarrow MAX_{2\left(a+b\right)}=17\)
hay \(MAX_{2a+2b=17}\)
Mà a + 2b = 9
\(\Rightarrow a=8\)
Vậy a = 8 khi \(MAX_{a+b+c}=8,5;c=0\)