K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

a)đặt x^2-5x=y

<=> y^2+10y+24=0

<=>(y^2+2.5y+25)=1

<=>(y+5)^2=1

\(\left[\begin{matrix}y+5=1\\y+5=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}y=-4\\y=-6\end{matrix}\right.\)

với y=-4 <=> x^2-5x=-4<=> x(x-4)-(x-4)=0

<=> (x-4)(x-1)=0=>\(\left[\begin{matrix}x=1\\x=4\end{matrix}\right.\)

với y=-6<=> x^2-5x=-6<=> x(x-2)-3(x-2)=(x-2)(x-3)=>\(\left[\begin{matrix}x=2\\x=3\end{matrix}\right.\)

d) trôi hết đề bạn đăng quá nhiều

(x+2)(x+3)(x+4)(x+5)-24=0

<=>[(x+2)(x+5)][(x+3)(x+4)]-24=0

<=>(x^2+7x+10)(x^2+7x+12)-24=0

đặt x^2+7x+11=t

<=> (t-1)(t+1)-24=0

<=>t^2-1-25=0

<=>t^2=25=> t=+-5

với t=5

x^2+7x+11=5<=> x^2+7x+6=0

{a-b+c=0}=> x=-1 hoặc -6

với t=-5

x^2+7x+11=-5<=> x^2+7x+17=0=> vô nghiệm

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

a) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-2\right)-3\left(x-2\right)\right]\left[x\left(x-1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)

Vậy: S={1;2;3;4}

b) Ta có: \(\left(2x+1\right)^2-2x-1=2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)

\(\Leftrightarrow\left(2x+1+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{2}\right\}\)

c) Ta có: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-x^2+x-x^2+x-1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-2x^2+2x-1\right)-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-x-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-4x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\forall x\)

nên (x-2)(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy: S={2;-1}

d) Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+2x\right)+x\left(x^2+1+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

19 tháng 4 2019

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

a: =>(5x+3)(x-1)=0

=>x=1 hoặc x=-3/5

b: =>(x-3)(4x-1-5x-2)=0

=>(x-3)(-x-3)=0

=>x=-3 hoặc x=3

c: =>(x+6)(3x-1+x-6)=0

=>(x+6)(4x-7)=0

=>x=7/4 hoặc x=-6

Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?A/ 0x + 2 = 2 B/ 5x + 2y = 0 C/ 2x/3 + 1 = 0 D/2/3x + 4=0Câu 2: Phương trình x = 1 tương đương với phương trình nào sau đây?A/ x2 = 1 B/ x(x – 1) = 0 C/ x2 + x – 2 = 0 D/ 2x – 1= xCâu 3: Tập nghiệm phương trình x – 3 = 0 được viết như thế nào?A. S = {0} B. S ={3} C. S = {3; 0} D. S = {–3}Câu 4. Điều kiện xác định của phương trình x/x-3 - (x-1)/x=1: là kết luận nào sau đây?A....
Đọc tiếp

Câu 1: Phương trình nào sau đây là phương trình bậc nhất một ẩn?

A/ 0x + 2 = 2 B/ 5x + 2y = 0 C/ 2x/3 + 1 = 0 D/2/3x + 4=0

Câu 2: Phương trình x = 1 tương đương với phương trình nào sau đây?

A/ x2 = 1 B/ x(x – 1) = 0 C/ x2 + x – 2 = 0 D/ 2x – 1= x

Câu 3: Tập nghiệm phương trình x – 3 = 0 được viết như thế nào?

A. S = {0} B. S ={3} C. S = {3; 0} D. S = {–3}

Câu 4. Điều kiện xác định của phương trình x/x-3 - (x-1)/x=1: là kết luận nào sau đây?

A. x≠0 B. x≠3 C. x≠0; x≠3 D. x≠0; x≠–3

Câu 5. Tập nghiệm S = { 1,2} là của phương trình nào sau đây?

A. 5x – 6 = 0 B. 6x – 5 = 0 C. (x – 1)(x – 2) = 0 D. 1x = 2

Câu 6: Số nào sau đây nghiệm đúng phương trình 1= 2x + 3 ?

A/ x = 1 B/ x = –1 C/ x = –2 D/ x = 0
 

Hình 1 Hình 2 Hình 3

Câu 7. Hình 1, biết AD là tia phân giác của . Tỷ số x: y bằng tỉ số nào sau đây?

A. 5 : 2 B. 5 : 4 C. 2 : 5 D. 4 : 5

Câu 8. Hình 2, ký hiệu cặp tam giác nào sau đây đồng dạng với nhau là đúng?

a. ∆ABC∼ ∆ACB b. ∆ABC∼ ∆MPN c. ∆ABC∼ ∆MNP d. Cả a, b, c đều đúng.

Câu 9: Hình 3, nếu EF // BC, tỉ lệ thức nào đúng theo định lí Ta - lét?

A/AE/EB = CF/CA B/EA/EB = AF/FC C/AE/EB = AF/AC D/AE/AB = AC/AF

Câu 10: Hình 3, nếu EF // BC, theo hệ quả của định lí Ta-lét ta có tỉ lệ thức nào?

A/AE/BA=AF/AC=EF/BC .B/AE/AB=AF/AC .C/AE/AB=AF/FC=EF/BC .D/AE/EB=AF/FC

Câu 11: Hình 3, tỉ lệ thức nào sau đây đúng sẽ cho ta kết luận EF// BC?

A/AE/AB=EF/BC .B/AE/BE=AF/FC .C/AE/EB=AF/AC .D/FE/CB=AF/FC

Câu 12: Hình 3, nếu EF // BC, ta có cặp tam giác nào đồng dạng sau đây là đúng?

a. ∆ABC∼ ∆AFE b. ∆ABC∼ ∆EAF c. ∆BAC∼ ∆EAF d. Cả a, b, c đều đúng.

Câu 13. DABC ∼DDEF biết góc A = 500 , góc E= 700, AB = 4cm, ta kết luận được gì sau đây?

A. góc B = 700 B. góc B = 500 C. BC = 4cm D. BC = 4cm

Câu 14. Diện tích một hình chữ nhật thay đổi thế nào nếu tăng chiều rộng lên gấp đôi và giảm chiều dài đi ba lần?

A. Tăng 2 lần B. Giảm 1,5 lần C. Tăng 1,5 lần D. Giảm 1,5 lần

Câu 15. Cạnh hình thoi dài 5cm, một đường chéo dài 6cm thì có diện tích bao nhiêu?

A. S = 36cm2 B. S = 30cm2 C. S = 25cm2 D. S = 24cm
note*:∼ là đồng dạng 

các cậu giúp mình với mai mình nộp bài r

1
12 tháng 3 2022

rối qué với cả vì hum bt