cho M = x.(x-4) với giá trị nào của x thì :
a/ M = 0
b/ M > 0
c/ M < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy khi x = 0 hoặc x = 3 thì M = 0
b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Vậy \(0< x< 3\) thì M < 0
a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)
\(\Leftrightarrow4m^2+16m+16-36m=0\)
\(\Leftrightarrow m^2-5m+4=0\)
\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)
hay \(m\in\left\{1;4\right\}\)
b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)
\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)
=>-36m+52=0
=>-36m=-52
hay m=13/9
d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)
\(\Leftrightarrow m\left(m-4m-12\right)=0\)
=>m(-3m-12)=0
=>m=0 hoặc m=-4
a) PT có nghiệm kép khi △=0
\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)
\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)
\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)
+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)
+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)
Lời giải:
Để hai đường thẳng trùng nhau thì trước tiên ta có: \(\frac{1}{m}=\frac{-m}{-1}=m(m\neq 0)\Leftrightarrow m=\pm 1\)
Nếu $m=1$ thì $(d_1): x-y=0$ và $(d_2): x-y=2$ không trùng nhau được
Nếu $m=-1$ thì $(d_1): x+y=0$ và $(d_2): x+y=0$ trùng nhau
Đáp án D.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
\(x^2-\left(m-1\right)x-m^2+m-2=0\)
Để pt có 2 nghiệm pb thì
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)>0\\ \Leftrightarrow m^2-2m+1+4m^2-4m+8>0\\ \Leftrightarrow5m^2-6m+9>0\\ \Leftrightarrow5\left(m^2-2\cdot\dfrac{3}{5}m+\dfrac{9}{25}+\dfrac{36}{25}\right)>0\\ \Leftrightarrow5\left(m-\dfrac{3}{5}\right)^2+\dfrac{36}{5}>0\left(luôn.đúng\right)\)
Do đó PT luôn có 2 nghiệm pb với mọi m
Áp dụng Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m-1}{1}=m-1\\x_1x_2=\dfrac{-m^2+m-2}{1}=-m^2+m-2\end{matrix}\right.\)
\(C=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\\ C=\left(m-1\right)^2-2\left(-m^2+m-2\right)\\ C=m^2-2m+1+2m^2-2m+4\\ C=3m^2-4m+5\\ C=3\left(m^2-2\cdot\dfrac{2}{3}m+\dfrac{4}{9}+\dfrac{11}{9}\right)\\ C=3\left(m-\dfrac{2}{3}\right)^2+\dfrac{11}{3}\ge\dfrac{11}{3}\\ C_{min}=\dfrac{11}{3}\Leftrightarrow m=\dfrac{2}{3}\)
a, M = 0
<=> x hoặc x-4 = 0
=> x = 0 hoặc x = 4
b, M > 0
<=> x và x-4 cùng dấu
<=> x > 0 và x - 4 > 0 hoặc x < 0 và x - 4 < 0
=> x > 0 và x > 4 hoặc x < 0 và x < 4
=> x > 4 hoặc x < 0
c, M < 0
<=> x và x - 4 khác dấu
Mà x - 4 < x
=> x > 0 và x - 4 < 0
=> x > 0 và x < 4
=> 0 < x < 4