Cho tam giác ABC cân tại A.Kẻ đường cao AH.Từ H kẻ HD⊥AC,HE⊥AB.Gọi M,N lần lượt là trung điểm của các đoạn thẳng HB,HC.Chứng minh tứ giác DEMN là hình thang vuông.
Giúp mik với :,((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s cái hình thì tự vẽ lấy ok :)))))
Ta có tam giác MEH cân suy ra \(\widehat{HEM}=\widehat{MHE}\)
Tam giác DEH cân suy ra \(\widehat{DHE}=\widehat{MHE}\)
Mà \(\widehat{DEH}+\widehat{MHE}=90^0\)
\(\Rightarrow\widehat{HEM}+\widehat{DEH}=90^0\)
\(\Rightarrow\hept{\begin{cases}EM\perp ED\\DN\perp ED\end{cases}\Rightarrow MN//ED}\)
Nên DEMN là hình thang vuông ( đpcm )
Nóng rã cả mồ hôi
Mình nói cho bạn các bước nhé
B1: Chứng minh ADEH là hình chữ nhật
B2: Trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên EM=MH =1/2 BH, DN=NH =1/2 CH và các tam giác cân EMH,DNH để suy ra góc EMH=góc EHM (1),góc NHD=góc NDH (3)
B3: Gọi O là giao điểm 2 đường chéo của hcn ADEH nên OE=OH tam giác OEH cân rồi góc OEH=góc OHE (2)
B4: Từ (1) và (2) ta được góc MED=góc AHM =90 độ
Tương tự như bước 3 , ta được tam giác OHD cân nên góc OHD=góc ODH (4)
Từ (3) và (4) suy ra: góc NDE=góc AHN=90 độ
Tứ giác DEMN có: góc MED =góc NDE =90 độ nên là hình thang vuông
Mong bạn hiểu và làm được. Chúc bạn học tốt
Ta có: góc HEA = góc EAD = góc ADH (=900)
=> tứ giác AEHD là hình chữ nhật
=> ED = AH.
Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT
Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)
Xét tam giác MET và tam giác MHT có:
ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)
=> tam giác MET = tam giác MHT (c-c-c)
=> góc MET= góc MHT =900 (2 góc tương ứng) (2)
Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)
=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)
Từ (2)(3) => EM song song với DN
(vì cùng vuông góc với DE " từ vuông góc đến song song")
=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)
=> hình thang EMND là hình thang vuông
1.Giải:
a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC
=> AM là đường trung tuyến ứng với cạnh BC
=> M là trung điểm của cạnh BC
=> AM = BM = \(\frac{1}{2}\)BC
Vì AM = BM => Tam giác ABM cân tại M
b. Vì N là trung điểm của AB
=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM
Mà tam giác ABM cân tại M ( câu a )
=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM
=> \(MN\perp AB\)
Do đó: MN//AC (cùng vuông góc với AB)
=> MNAC là hình thang
Mặt khác: \(\widehat{NAC}\)= \(^{90^0}\)(gt)
=> Tứ giá MNAC là hình thang vuông.
vẽ hình cho mình luôn đc ko