K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

để chứng minh A > \(\frac{4}{3}\)ta tách tổng A thành 3 nhóm :

A = \(\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)

A > \(\frac{1}{30}.20+\frac{1}{50}.20+\frac{1}{70}.20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\)

để chứng minh A < 2,5 ta tách tổng A thành 6 nhóm :

A = \(\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)

A < \(\frac{1}{11}.10+\frac{1}{21}.10+\frac{1}{31}.10+\frac{1}{41}.10+\frac{1}{51}.10+\frac{1}{61}.10< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\)

Bạn có hiểu không chi le hay để mình giải thích cho

29 tháng 5 2017

Ta tách biểu thức thành 7 nhóm , t CÓ các nhóm sau : 

\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+...+\(\frac{1}{20}\)

- .....

Ta thấy tất cả các phân số trên đều > hơn \(\frac{1}{20}\)

=> \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+....+\(\frac{1}{20}\)\(\frac{10}{20}\)=\(\frac{1}{2}\) ( VÌ CÓ  10 phân số đều lớn hơn hoặc = \(\frac{1}{20}\))

Tương tự với 7 nhóm còn lại mỗi nhóm gồm 10 phân số ta được các phân số \(\frac{1}{3}\),\(\frac{1}{4}\),\(\frac{1}{5},\frac{1}{6},\frac{1}{7}\)

Ta cộng tổng các p/s \(\frac{1}{3},\frac{1}{4}\frac{1}{5},\frac{1}{6},\frac{1}{7}\)ta được p/s \(\frac{223}{140}>\frac{4}{3}\)

=> ĐIỀU PHẢI CHỨNG MINH

Mk chỉ làm được ở chỗ 4/3 < A thôi 

Vậy nhé bạn yêu wys!!!!!!!!!!!!!!

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

12 tháng 3 2017

yêu cầu của đề bài là gì vậy bạn

12 tháng 3 2017

A = \(\left(\frac{1}{11}+\frac{1}{12}+.........+\frac{1}{20}\right)\)  +  \(\left(\frac{1}{21}+\frac{1}{22}+..........+\frac{1}{30}\right)\)\(\left(\frac{1}{31}+.....+\frac{1}{60}\right)\)+ ... + \(\frac{1}{70}\)

Nhận xét: 

\(\frac{1}{11}\)\(\frac{1}{12}\)+ ........  +  \(\frac{1}{20}\)\(\frac{1}{20}\)+\(\frac{1}{20}\)+........+\(\frac{1}{20}\)\(\frac{10}{20}\)>\(\frac{1}{2}\)

\(\frac{1}{21}+\frac{1}{22}+.......+\frac{1}{30}>\frac{30}{60}>\frac{1}{2}\)

\(\frac{1}{31}+......+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.......+\frac{1}{60}>\frac{30}{60}>\frac{1}{2}\)

A > \(\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+......+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}>\frac{4}{3}\)

Bạn vô câu hỏi tương tự để tham khảo nha!!!