K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cau 2: A

Câu 3: C

Câu 4: D

Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7. Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100. Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50   . b) x vừa là bội của 25 vừa là ước của 150. Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ? Bài 19. Trong các số sau:...
Đọc tiếp

Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7. Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100. Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50   . b) x vừa là bội của 25 vừa là ước của 150. Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ? Bài 19. Trong các số sau: 0,12,17,23,110,53,63,31 , số nào là số nguyên tố? Bài 20. Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố: a) 4* b) 7*, c) * d) 2*1 Bài 21. Thay dấu * bằng chữ số thích hợp để mỗi số sau là hợp số: a) 1* ; b) * 10 c) *1 d) *73. Bài 21. a) Tìm tất cả ước chung của hai số 20 và 30. b) Tìm tất cả ước chung của hai số 15 và 27. Bài 23. Tìm ước chung lớn nhất của các số: a) 7 và 14; b) 8,32 và 120 ; c) 24 và 108 ; d) 24,36 và 160. Bài 24. Tìm bội chung nhỏ nhất của các số: a) 10 và 50 ; b) 13,39 và 156 c) 30 và 28 ; d) 35,40 và

2
23 tháng 10 2021

Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7.

a) 6 bội của 6 là : {0 ; 6 ; 12 ; 18 ; 24 ; 30}

 b) bội nhỏ hơn 30 của 7 là : {0 ; 7 ; 14 ; 21 ; 28}

Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100

a) Ư(36) = {1 ; 2 ; 3 ; 4 ;6 ; 9 ; 12 ; 18}

b) Ư(100) = {20 ; 25 ; 50}

Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50   . b) x vừa là bội của 25 vừa là ước của 150.

a) vậy x E BC(11 và 500) vì 11 và 500 nguyên tố cùng nhau nên BC(11 ; 500) = 500 x 11 = 5500

vậy x \(⋮\)25 và 150 \(⋮\)x         B(25) = {0 ; 25 ; 50 ; 75 ; 100 ; 125 ; 150 ; 175...}

Ư(150) = {1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 25 ; 30 ; 50 ; 75 ; 150}  => a = (25 ; 50 ; 75)

Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ?

a) chia hết cho 2 là : 5670

b) chia hết cho 3 là : 2007 ; 6915 ; 5670 ; 4827

c) chia hết cho 5 là : 5670 ; 6915

d) chia hết cho 9 là : 2007 ; 

Bài 19. Trong các số sau: 0,12,17,23,110,53,63,31 , số nào là số nguyên tố?

SNT là : 17 ; 23 ; 53 ; 31

Bài 20. Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố: a) 4* b) 7*, c) * d) 2*1

4* = 41 ; 43 ; 47 

7* = 71 ; 73 ; 79

* = 2 ; 3 ; 5 ; 7

2*1 ; 221 ; 211 ; 251 ; 271

Bài 21. Thay dấu * bằng chữ số thích hợp để mỗi số sau là hợp số: a) 1* ; b) * 10 c) *1 d) *73.

1* = 11 ; 13 ; 17 ; 19

*10  = ???

*1 = 11 ; 31 ; 41 ; 61 ; 71 ; 91

*73 = 173 ; 373 ; 473 ; 673 ; 773 ; 973

12 tháng 11 2023

J mà lắm z ba

Câu 1: B

Câu 2: B

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
Bài 1: Hãy điền số thích hợp vào chỗ chấm Câu 1.1: Cho số M = 26 .3.5 Ước nguyên âm bé nhất của M là: ........... Câu 1.2: Gọi A là tập hợp các bội của 7 có 5 chữ số. Phần tử lớn nhất của tập hợp A là ........... Câu 1.3: Số đối của I-2015I là ............ Câu 1.4: Tập hợp các số tự nhiên n để 4n + 21 chia hết cho 2n + 3 là {........} Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau...
Đọc tiếp

Bài 1: Hãy điền số thích hợp vào chỗ chấm Câu 1.1: Cho số M = 26 .3.5 Ước nguyên âm bé nhất của M là: ........... Câu 1.2: Gọi A là tập hợp các bội của 7 có 5 chữ số. Phần tử lớn nhất của tập hợp A là ........... Câu 1.3: Số đối của I-2015I là ............ Câu 1.4: Tập hợp các số tự nhiên n để 4n + 21 chia hết cho 2n + 3 là {........} Nhập các phần tử theo giá trị tăng dần, ngăn cách nhau bởi dấu ";" Câu 1.5: Cho A = 2011. 2012. 2013 + 2014. 2015 . 2016 Chữ số tận cùng của A là ................ Câu 1.6: Một hội trường có 270 chỗ ngồi được xếp thành từng hàng và số ghế ở mỗi hàng như nhau. Nếu xếp thêm hai hàng và số ghế mỗi hàng giữ nguyên thì hội trường có 300 chỗ ngồi. Vậy số hàng ghế lúc đầu là: .......... Câu 1.7: Số tự nhiên chỉ có hai ước nguyên là số ........... Câu 1.8: Số tự nhiên x để đạt giá trị nhỏ nhất là: x = ......... Câu 1.9: Chia hai số khác nhau có 5 chữ số cho nhau, có số dư là 49993 và số bị chia chia hết cho 8. Biết thương khác 0. Vậy số bị chia bằng ............ Câu 1.10: Hãy điền dấu >, < , = vào chỗ chấm cho thích hợp. So sánh A = 2015/(-2014) và B = -2016/2015 ta được A ......... B. Bài 2: Đi tìm kho báu Câu 2.1: Số các số có ba chữ số chia 7 dư 3 là ......... • a. 140 • b. 139 • c. 129 • d. 130 Câu 2.2: Cho p là một số nguyên tố lớn hơn 3. Biết p; p + d; p + 2d là số nguyên tố. Khẳng định nào dưới đây là đúng. • a. d chia hết cho 6 • b. d chia 6 dư 1 • c. d chia 6 dư 2 • d. d chia 6 dư 3 Câu 2.3: Số cặp tự nhiên (x; y) thỏa mãn x/5 - 4/y = 1/3 là ........... • a. 4 • b. 3 • c. 1 • d. 2 Câu 2.4: Cho n là số tự nhiên. Trong các số bên dưới, số không là bội của 6 là .......... • a. n3 - n • b. n(n + 1)(n + 2) • c. n2 = 1 với n là số nguyên tố > 3 • d. n3 - n + 2 Câu 2.5: Tổng của n số tự nhiên liên tiếp 1 + 2 + 3 + ..... + n có thể có tận cùng là chữ số nào trong các chữ số dưới đây. • a. 2 • b. 4 • c. 8 • d. 7 Bài 3: Đỉnh núi trí tuệ Câu 3.1: Số các cặp (x; y) nguyên thỏa mãn x > y và x/9 = 7/y là ........ Câu 3.2: Tìm số tự nhiên n sao cho n(n + 2) + n + 2 = 42. Trả lời: n = .......... Câu 3.3: Số tự nhiên n có ba chữ số lớn nhất sao cho 2n + 7 chia hết cho 13 là ......... Câu 3.4: Tìm số nguyên x biết 25 + 24 + 23 + ...... + x = 25 Trả lời: x = .......... Câu 3.5: Tìm ba số nguyên a; b; c biết: a + b - c = -3; a - b + c = 11; a - b - c = -1. Trả lời: (a; b; c) = (.......) Nhập các giá trị theo thứ tự, ngăn cách nhau bởi dấu ";" Câu 3.6: So sánh hai phân số: và ta được A .......... B Điền dấu >, <, = thích hợp vào chỗ chấm Câu 3.7: Số các cặp (x; y; z) nguyên (x ≥ y ≥ z) thỏa mãn IxI + IyI + IzI = 2 là .......... Câu 3.8: Cho góc xOy = 135o. Trên nửa mặt phẳng bờ Oy chứa Ox, vẽ tia Oz sao cho góc yOz vuông. Gọi Ot là tia đối của tia Oz. Khi đó số đo góc xOt là ...........o. Câu 3.9: Viết 2013 thành tổng n số nguyên tố. Giá trị nhỏ nhất của n là .......... Câu 3.10: Tìm các số nguyên x; y (y > 0) biết Ix2 - 1I + (y2 - 3)2 = 2. Trả lời: x = .......; y = ........

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 4....
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y...
Đọc tiếp

Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?

Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23

Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?

Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13

Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}

Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y là….

Câu 7: Tìm số tự nhiên          a bé nhất biết a: 120 dư 58 và a: 135 dư 88

Câu 8: Biết a+b= 12.

Tính A= 15a+ 7b- (6a-2b)+32

Câu 9: Tổng 30 số tự nhiên liên tiếp là 2025. Giả sử d là ƯCLN của số đó. Khi đó gtrị lớn nhất của d là bao nhiêu.

Câu 10: Cho số tự nhiên B= ax by  trong đó a và b là các số tự nhiên khác nhau và khác 0. Biết B2 có 15 ước. Hỏi B3  tât cả bao nhiêu ước ?

0