Cho 2 hàm số bậc nhất y=-2x+k và y=3x-k+4. Với giá trị nào của k thì: a) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục tung. b) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left\{{}\begin{matrix}m+1=2m-3\\-2k+1\ne-k-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\k\ne3\end{matrix}\right.\\ b,\Leftrightarrow x=0\Leftrightarrow-2k+1=-k-2\Leftrightarrow k=3\)
Phương trình hoành độ giao điểm:
`x-m=-2x+m-1`
`<=>3x-2m+1=0`
2 đồ thị cắt nhau tại 1 điểm trên `Ox <=> -2m+1 =0 <=> m=1/2`
ta có: y=x-m (d); y=-2x+m-1 (d')
pt hoành độ của (d) và (d')
x-m=-2x+m-1
⇔x+2x-m-m+1=0
⇔3x-2m+1=0 (1)
để (d) và (d') cắt nhau tại một điểm thuộc trục hoành -->y=0⇔x=m
--->x=m là nghiệm của pt(1)
thay x=m vào pt, ta có:
3m-2m+1=0
⇔m+1=0
⇔m=-1
vậy khi m=-1 thì đồ thị của các hàm số trên cắt nhau tại một điểm thuộc trục hoành
Gọi A và B lần lượt là giao điểm của \(d_1\) và \(d_2\) với trục tung
\(\Rightarrow\left\{{}\begin{matrix}A\left(0;2\right)\\B\left(0;k-3\right)\end{matrix}\right.\)
Đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung khi và chỉ khi A trùng B
\(\Leftrightarrow2=k-3\)
\(\Leftrightarrow k=5\)
Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:
hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m
hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m
Vì cùng là tung độ của giao điểm nên:
3 + m = 5 – m => m = 1
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
(Lưu ý: Điểm trên trục tung có hoành độ là 0)
Đồ thị hai hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung nên ta thay hoành độ x = 0 vào:
hàm số y = 2x + (3 + m) ta được tung độ: y = 3 + m
hàm số y = 3x + (5 – m) ta được tung độ: y = 5 – m
Vì cùng là tung độ của giao điểm nên:
3 + m = 5 – m => m = 1
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
(Lưu ý: Điểm trên trục tung có hoành độ là 0)
Hai đường thẳng y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung nghĩa là chúng có cùng tung độ góc.
Suy ra: 5 – m = 3 + m ⇔ 2m = 2 ⇔ m = 1
Vậy với m = 1 thì đồ thị của các hàm số y = 12x + (5 – m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung.
Để hai đồ thị hàm số y=3x+m-10 và y=-3x-m+2 cắt nhau tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}3\ne-3\left(đúng\right)\\m-10=-m+2\end{matrix}\right.\)
=>m-10=-m+2
=>2m=12
=>m=6
a, hàm số đi qua gốc tọa độ O
\(\Rightarrow\) đồ thị hàm số có dạng \(y=x.z=mx+(2m+1)\Rightarrow 2m+1=0\)
\(\Rightarrow m=-\dfrac{1}{2}\)
b, khi \(m=1\Rightarrow y=x+3\)
Xét y=0 suy ra x=-3
suy ra lấy điểm A(-3,0)
Xét x=0 suy ra y=3
Lấy điểm B(0,3)
Nối A,B ta được đồ thị cần vẽ
c, đồ thị hàm số trên cắt đồ thị hàm số y=2x-1 tại 1 điểm trên trục tung suy ra gọi điểm đó là M ta có ( giao của 2 đồ thị nha)
M có hoành độ =0
thay vào 2 hàm số trên suy ra:
\(\hept{\begin{cases}y=2m+1\\y=-1\end{cases}\Rightarrow2m+1=-1\Rightarrow m=-1}\)
Xong rồi bạn nha!
Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)
Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)
a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:
\(k=-k+4\Rightarrow x=2\)
b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:
\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)
vẽ đồ thị hàm số y=/x/+4x . Với giá trị nào của k thì hàm số y=k cắt đồ thị hàm số trên tại hai điểm phân biệt